f(x)(xR)為奇函數(shù),f(1)=,f(x+2)=f(x)+f(2),則f(5)=

[  ]

A.0

B.1

C.

D.5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)對(duì)于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對(duì)”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“類P數(shù)對(duì)”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
(1)若(1,1)是f(x)的一個(gè)“P數(shù)對(duì)”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個(gè)“P數(shù)對(duì)”,且當(dāng)x∈[1,2)時(shí)f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個(gè)“類P數(shù)對(duì)”,試比較下列各組中兩個(gè)式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•順義區(qū)二模)對(duì)于定義域分別為M,N的函數(shù)y=f(x),y=g(x),規(guī)定:
函數(shù)h(x)=
f(x)•g(x),當(dāng)x∈M且x∈N
f(x),當(dāng)x∈M且x∉N
g(x),當(dāng)x∉M且x∈N

(1)若函數(shù)f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函數(shù)h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,設(shè)bn為曲線y=h(x)在點(diǎn)(an,h(an))處切線的斜率;而{an}是等差數(shù)列,公差為1(n∈N*),點(diǎn)P1為直線l:2x-y+2=0與x軸的交點(diǎn),點(diǎn)Pn的坐標(biāo)為(an,bn).求證:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,2π],請(qǐng)問,是否存在一個(gè)定義域?yàn)镽的函數(shù)y=f(x)及一個(gè)α的值,使得h(x)=cosx,若存在請(qǐng)寫出一個(gè)f(x)的解析式及一個(gè)α的值,若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時(shí),f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當(dāng)x∈[-1,0]時(shí)f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個(gè)無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個(gè)不同的根.
其中真命題的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2ax+2a2-2(a≠0),g(x)=-ex-
1
ex
,則下列命題為真命題的是( 。
A、?x∈R,都有f(x)<g(x)
B、?x∈R,都有f(x)>g(x)
C、?x0∈R,使得f(x0)<g(x0
D、?x0∈R,使得f(x0)=g(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省高一10月月考數(shù)學(xué)試卷(解析版) 題型:選擇題

函數(shù)f(x)(x∈R)為偶函數(shù),且f(x)在[0,+∞)上是增函數(shù),則f(-2)、f(-π)、f(3)的大小順序是(  )

A.f(-π)>f(3)>f(-2)                    B.f(-π)>f(-2)>f(3)

C.f(-π)<f(3)<f(-2)                    D.f(-π)<f(-2)<f(3)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案