解答:解:(1)y=
=
=2+
,
令x-1=t,則x=t+1,t∈[-1,0],y=2+
,
當(dāng)t=0時,y=2;當(dāng)t∈[-1,0),y=2+
,
由對勾函數(shù)的單調(diào)性得y∈[0,2),故函數(shù)在[0,1]上的值域是[0,2];
(2)f(x)的值域是[0,2],要g(x
0)=f(x
1)成立,則[0,2]⊆{y|y=g(x),x∈[0,1]}
①當(dāng)a=0時,x∈[0,1],g(x)=5x∈[0,5],符合題意;
②當(dāng)a>0時,函數(shù)g(x)的對稱軸為x=-
<0,故當(dāng)x∈[0,1]時,函數(shù)為增函數(shù),則g(x)的值域是[-2a,5-a],由條件知[0,2]⊆[-2a,5-a],∴
?0<a≤3;
③當(dāng)a<0時,函數(shù)g(x)的對稱軸為x=-
>0.
當(dāng)0<-
<1,即a<-
時,g(x)的值域是[-2a,
]或[5-a,
],
由-2a>0,5-a>0知,此時不合題意;當(dāng)-
≥1,即-
≤a<0時,g(x)的值域是[-2a,5-a],
由[0,2]⊆[-2a,5-a]知,由-2a>0知,此時不合題意.
綜合①②③得0≤a≤3.