已知點(diǎn)是直線被橢圓所截得的線段中點(diǎn),求直線的方程。

解析試題分析:由題意可設(shè)的方程為:


整理,得

的中點(diǎn)為

解得 
代入,得
,經(jīng)驗(yàn)證
所以滿足題目要求
所求的方程為:
考點(diǎn):直線與橢圓相交問(wèn)題
點(diǎn)評(píng):直線與橢圓相交的中點(diǎn)弦問(wèn)題的求解一般有兩種思路:其一,設(shè)出直線方程,與橢圓方程聯(lián)立將中點(diǎn)坐標(biāo)轉(zhuǎn)化為兩交點(diǎn)坐標(biāo),其二,采用點(diǎn)差法,即將兩交點(diǎn)坐標(biāo)分別代入橢圓方程,得到的兩式子相減即可得到直線斜率,兩種方法都要驗(yàn)證所求直線是否滿足與橢圓有兩交點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,一個(gè)頂點(diǎn)為,且其右焦點(diǎn)到直線的距離為3.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)直線過(guò)定點(diǎn),與橢圓交于兩個(gè)不同的點(diǎn),且滿足
求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓:的焦距為,離心率為,其右焦點(diǎn)為,過(guò)點(diǎn)作直線交橢圓于另一點(diǎn).
(Ⅰ)若,求外接圓的方程;
(Ⅱ)若直線與橢圓相交于兩點(diǎn)、,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓的方程為,過(guò)點(diǎn)作圓的兩條切線,切點(diǎn)分別為、,直線恰好經(jīng)過(guò)橢圓的右頂點(diǎn)和上頂點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓垂直于軸的一條弦,所在直線的方程為是橢圓上異于的任意一點(diǎn),直線、分別交定直線于兩點(diǎn)、,求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,圓與離心率為的橢圓)相切于點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)引兩條互相垂直的兩直線與兩曲線分別交于點(diǎn)、與點(diǎn)(均不重合).
(ⅰ)若為橢圓上任一點(diǎn),記點(diǎn)到兩直線的距離分別為,求的最大值;
(ⅱ)若,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

動(dòng)圓M過(guò)定點(diǎn)A(-,0),且與定圓A´:(x-)2+y2=12相切.
(1)求動(dòng)圓圓心M的軌跡C的方程;
(2)過(guò)點(diǎn)P(0,2)的直線l與軌跡C交于不同的兩點(diǎn)E、F,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系中,射線OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),過(guò)點(diǎn)P(1,0)作直線分別交射線OA、OB于A、B兩點(diǎn).
(1)當(dāng)AB中點(diǎn)為P時(shí),求直線AB的方程;
(2)當(dāng)AB中點(diǎn)在直線上時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓過(guò)點(diǎn),其長(zhǎng)軸、焦距和短軸的長(zhǎng)的平方依次成等差數(shù)列.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與軸正半軸、軸分別交于點(diǎn),與橢圓分別交于點(diǎn),各點(diǎn)均不重合,且滿足,. 當(dāng)時(shí),試證明直線過(guò)定點(diǎn).過(guò)定點(diǎn)(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知離心率為的橢圓上的點(diǎn)到左焦點(diǎn)的最長(zhǎng)距離為

(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,過(guò)橢圓的左焦點(diǎn)任作一條與兩坐標(biāo)軸都不垂直的弦,若點(diǎn)軸上,且使得的一條內(nèi)角平分線,則稱點(diǎn)為該橢圓的“左特征點(diǎn)”,求橢圓的“左特征點(diǎn)”的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案