【題目】在直角坐標(biāo)系xOy中,過(guò)點(diǎn)P(2,1)的直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為ρsin2θ=2cosθ,已知直線(xiàn)l與曲線(xiàn)C交于A、B兩點(diǎn).
(1)求曲線(xiàn)C的直角坐標(biāo)方程;
(2)求|PA||PB|的值.
【答案】
(1)解:曲線(xiàn)C的極坐標(biāo)方程為ρsin2θ=2cosθ,即為ρ2sin2θ=2ρcosθ,化為普通方程為:y2=2x
(2)解:把直線(xiàn)l的參數(shù)方程代入拋物線(xiàn)方程可得:t2+(2﹣2 )t﹣3=0.
∴t1t2=﹣3.
∴|PA||PB|=|t1t2|=3
【解析】(1)曲線(xiàn)C的極坐標(biāo)方程為ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,利用互化公式可得直角坐標(biāo)方程.(2)把直線(xiàn)l的參數(shù)方程代入拋物線(xiàn)方程可得:t2+(2﹣2 )t﹣3=0.利用根與系數(shù)的關(guān)系、參數(shù)的幾何意義即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+4xsinα+tanα(0<a<)有且僅有一個(gè)零點(diǎn)
(Ⅰ)求sin2a的值;
(Ⅱ)若cos2β+2sin2β=+sinβ, β∈,求β-2α的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,過(guò)點(diǎn)P(2,1)的直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為ρsin2θ=2cosθ,已知直線(xiàn)l與曲線(xiàn)C交于A、B兩點(diǎn).
(1)求曲線(xiàn)C的直角坐標(biāo)方程;
(2)求|PA||PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次函數(shù),分別從集合和中隨機(jī)取一個(gè)數(shù)和得到數(shù)對(duì).
(1)若, ,求函數(shù)在內(nèi)是偶函數(shù)的概率;
(2)若, ,求函數(shù)有零點(diǎn)的概率;
(3)若, ,求函數(shù)在區(qū)間上是增函數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=loga(x+3)﹣1(a>0且a≠1)的圖象恒過(guò)定點(diǎn)A,若點(diǎn)A在mx+ny+2=0上,其中mn>0,則 的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開(kāi)辟為水果園種植桃樹(shù),已知角A為120°,AB,AC的長(zhǎng)度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP,AQ總長(zhǎng)度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,AP段圍墻造價(jià)為每平方米150元,AQ段圍墻造價(jià)為每平方米100元.若圍圍墻用了30000元,問(wèn)如何圍可使竹籬笆用料最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=. ,直線(xiàn)x=0,x=e,y=0,y=1所圍成的區(qū)域?yàn)镸,曲線(xiàn)y=f(x)與直線(xiàn)y=1圍成的區(qū)域?yàn)镹,在區(qū)域M內(nèi)任取一個(gè)點(diǎn)P,則點(diǎn)P在區(qū)域N內(nèi)概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)C1的參數(shù)方程為 (θ為參數(shù)),曲線(xiàn) C2的極坐標(biāo)方程為ρcosθ﹣ ρsinθ﹣4=0.
(1)求曲線(xiàn)C1的普通方程和曲線(xiàn) C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線(xiàn)C1上一點(diǎn),Q為曲線(xiàn) C2上一點(diǎn),求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿(mǎn)足an+1﹣an=2,a1=﹣5,則|a1|+|a2|+…+|a6|=( )
A.9
B.15
C.18
D.30
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com