分析 (1)通過兩角和與差的三角函數(shù)以及二倍角公式化簡函數(shù)的解析式,然后求解周期;
(2)求出相位的范圍,然后利用三角函數(shù)的有界性求解最值.
解答 解:(1)函數(shù)f(x)=sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)+2cos2x-1
=sin2xcos$\frac{π}{3}$+cos2xsin$\frac{π}{3}$+sin2xcos$\frac{π}{3}$-cos2xsin$\frac{π}{3}$+cos2x
=sin2x+cos2x=$\sqrt{2}$$sin(2x+\frac{π}{4})$
∴$T=\frac{2π}{2}=π$.
(2)x∈[-$\frac{π}{4}$,$\frac{π}{4}$],2x+$\frac{π}{4}$∈[$-\frac{π}{4}$,$\frac{3π}{4}$],$sin(2x+\frac{π}{4})$∈[-$\frac{\sqrt{2}}{2}$,1],
f(x)∈[-1,$\sqrt{2}$],
函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最小值為-1;最大值為$\sqrt{2}$.
點(diǎn)評(píng) 本題考查兩角和與差的三角函數(shù),三角函數(shù)的周期以及三角函數(shù)的最值的求法,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
n | 100 | 150 | 200 | 500 | 800 | 1000 |
m | 58 | 96 | 116 | 295 | 484 | 601 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ① | B. | ② | C. | ③ | D. | ④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-4,+∞) | B. | [-1,+∞) | C. | [0,+∞) | D. | [2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com