已知f(x)=
(
3
2
)x,x≥0
2x,x<0
,若對任意x∈[-1-m,m-1],不等式f(
2
x-m)≥[f(x)]3恒成立,求實(shí)數(shù)m的取值范圍.
考點(diǎn):函數(shù)最值的應(yīng)用
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:分段函數(shù)內(nèi)都是指數(shù)函數(shù),且底數(shù)都大于1,借助指數(shù)運(yùn)算及單調(diào)性化簡不等式,同時注意區(qū)間成立的條件從而求出實(shí)數(shù)m的取值范圍.
解答: 解:有題設(shè)知,f(x)=
(
3
2
)x,x≥0
2x,x<0
,則[f(x)]3=f(3x),
因此原不等式等價于f(
2
x-m)≥f(3x)
,
又∵f(x)在R上是增函數(shù),
2
x-m≥3x
,
m≤(
2
-3)x
,且x∈[-1-m,m-1],
∴當(dāng)x=m-1時,(
2
-3)x
取得最小值(
2
-3)(m-1),
因此m≤(
2
-3)(m-1),
解得m≤
2-
2
2

又∵m-1>-1-m,
∴m>0,
m∈(0,
2-
2
2
]
點(diǎn)評:本題綜合考查了學(xué)生對分段函數(shù),指數(shù)函數(shù),指數(shù)運(yùn)算及不等式的處理能力.將題目條件轉(zhuǎn)化為常見題型的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線x2+y2+4x-4y=0關(guān)于( 。
A、直線x=4對稱
B、直線x+y=0對稱
C、直線x-y=0對稱
D、直線(-4,4)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為4x+3y=0,則雙曲線的離心率為( 。
A、
5
3
B、
4
3
C、
5
4
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示是《函數(shù)的應(yīng)用》的知識結(jié)構(gòu)圖,如果要加入“用二分法求方程的近似解”,則應(yīng)該放在( 。
A、“函數(shù)與方程”的上位
B、“函數(shù)與方程”的下位
C、“函數(shù)模型及其應(yīng)用”的上位
D、“函數(shù)模型及其應(yīng)用”的下位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,c=
3
asinC+ccosA.
(1)求角A;
(2)若a=2
3
,△ABC的面積為
3
,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

力綜合治理交通擁堵狀況,緩解機(jī)動車過快增長勢頭,一些大城市出臺了“機(jī)動車搖號上牌”的新規(guī).某大城市2014年初機(jī)動車的保有量為600萬輛,預(yù)計此后每年將報廢本年度機(jī)動車保有量的5%,且報廢后機(jī)動車的牌照不再使用,同時每年投放10萬輛的機(jī)動車牌號,只有搖號獲得指標(biāo)的機(jī)動車才能上牌,經(jīng)調(diào)研,獲得搖號指標(biāo)的市民通常都會在當(dāng)年購買機(jī)動車上牌.
(Ⅰ)問:到2018年初,該城市的機(jī)動車保有量為多少萬輛;
(Ⅱ)根據(jù)該城市交通建設(shè)規(guī)劃要求,預(yù)計機(jī)動車的保有量少于500萬輛時,該城市交通擁堵狀況才真正得到緩解.問:至少需要多少年可以實(shí)現(xiàn)這一目標(biāo).(參考數(shù)據(jù):0.954=0.81,0.955=0.77,lg0.75=-0.13,lg0.95=-0.02)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=4,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥平面PAB;
(2)求異面直線PC與AD所成的角的大。
(3)求二面角P-BD-A的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x∈Z|-6≤x≤6},B={1,2,3},C={3,4,5,6}求:(1)B∩C;(2)A∩∁A(B∪C)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐S-ABCD中,底面ABCD是邊長為4的正方形,O是AC與BD的交點(diǎn),SO⊥平面ABCD,E是側(cè)棱SC的中點(diǎn),直線SA和AO所成角的大小是45°.
(1)求證:直線SA∥平面BDE;
(2)求直線BD與平面SBC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案