雙曲線
x2
16
-
y2
9
=1的漸近線與過其右焦點且垂直于x軸的直線所圍成的三角形面積是( �。�
分析:根據(jù)雙曲線方程,求出漸近線方程為y=±
3
4
x和右焦點坐標為F2(5,0),再求出過右焦點垂直于x軸的直線與漸近線的交點,利用三角形的面積公式即可算出所求三角形面積.
解答:解:∵雙曲線的方程為
x2
16
-
y2
9
=1
∴a2=16,b2=9,可得a=4且b=3,c=
a2+b2
=5
由此可得雙曲線的漸近線方程為y=±
3
4
x
∵右焦點F2(5,0),∴過雙曲線右焦點且垂直于x軸的直線為x=5
交漸近線y=±
3
4
x于A(5,
15
4
)和B(5,-
15
4
),可得|AB|=
15
2
,
因此,△A0B的面積為S=
1
2
|AB|×c=
75
4
,即為所求三角形的面積
故選:B
點評:本題給出已知雙曲線,求過其右焦點且與x軸垂直的直線被兩條漸近線所截得的三角形的面積.著重考查了雙曲線的標準方程與簡單幾何性質(zhì)等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以雙曲線-3x2+y2=12的焦點為頂點,頂點為焦點的橢圓的方程是( �。�
A、
x2
16
+
y2
12
=1
B、
x2
16
+
y2
4
=1
C、
x2
12
+
y2
16
=1
D、
x2
4
+
y2
16
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓以坐標原點為中心,坐標軸為對稱軸,且橢圓以拋物線y2=16x的焦點為其一個焦點,以雙曲線
x2
16
-
y2
9
=1
的焦點為頂點.
(1)求橢圓的標準方程;
(2)已知點A(-1,0),B(1,0),且C,D分別為橢圓的上頂點和右頂點,點P是線段CD上的動點,求
AP
BP
的取值范圍.
(3)試問在圓x2+y2=a2上,是否存在一點M,使△F1MF2的面積S=b2(其中a為橢圓的半長軸長,b為橢圓的半短軸長,F(xiàn)1,F(xiàn)2為橢圓的兩個焦點),若存在,求tan∠F1MF2的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是雙曲線
x2
16
-y2=1
的兩個焦點,點M在雙曲線上,若△F1MF2的面積為1,則
MF1
MF2
的值為( �。�
A、1
B、2
C、2
2
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓以坐標原點為中心,坐標軸為對稱軸,且該橢圓以拋物線y2=16x的焦點P為其一個焦點,以雙曲線
x2
16
-
y2
9
=1
的焦點Q為頂點.
(1)求橢圓的標準方程;
(2)已知點A(-1,0),B(1,0),且C、D分別為橢圓的上頂點和右頂點,點M是線段CD上的動點,求
AM
BM
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1、F2是雙曲線
x2
16
-y2=1
的兩個焦點,點M在雙曲線上,若△F1MF2的面積為1,則
MF1
MF2
的值為( �。�
A.1B.2C.2
2
D.0

查看答案和解析>>

同步練習(xí)冊答案