如圖,在平面直角坐標系中,點A(0,3),直線:,設(shè)圓的半徑為1,圓心在上.
(1)若圓心也在直線上,過點A作圓的切線,求切線的方程;
(2)若圓上存在點,使,求圓心的橫坐標的取值范圍.
(1)切線方程為和;(2).
解析試題分析:(1)先聯(lián)立直線方程求出圓心坐標,寫出圓的方程,設(shè)出直線方程,利用圓心到此直線距離為半徑求解;(2)設(shè)出點坐標,利用可得,在上,又在圓上,利用兩圓相交建立關(guān)系求解.
試題解析:(1)聯(lián)立和可得圓心(3,2),又因為半徑為1,
所以圓的方程為
設(shè)過點A的切線方程為:
圓心到直線的距離為
所以或
所求切線方程為和.
(2)設(shè)點,因為
所以
又因為點在圓上,
所以圓與圓相交,
設(shè)點,兩圓圓心距滿足:, 所以.
考點:直線和圓的位置關(guān)系、圓與圓的位置關(guān)系、點到線的距離公式.
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,曲線y=x2-6x+1與坐標軸的交點都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線x-y+a=0交于A,B兩點,且OA⊥OB,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,點,直線。設(shè)圓的半徑為,圓心在上。
(1)若圓心也在直線上,過點作圓的切線,求切線的方程;
(2)若圓上存在點,使,求圓心的橫坐標的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知是拋物線上的點,是的焦點, 以為直徑的圓與軸的另一個交點為.
(Ⅰ)求與的方程;
(Ⅱ)過點且斜率大于零的直線與拋物線交于兩點,為坐標原點,的面積為,證明:直線與圓相切.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,點,直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過點作圓的切線,求切線方程;
(2)若圓上存在點,使,求圓心的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知,圓C:,直線:.
(1) 當a為何值時,直線與圓C相切;
(2) 當直線與圓C相交于A、B兩點,且時,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com