【題目】已知定義在實(shí)數(shù)集R的函數(shù)f(x)滿足f(1)=4,且f(x)導(dǎo)函數(shù)f′(x)<3,則不等式f(lnx)>3lnx+1的解集為( )
A.(1,+∞)
B.(e,+∞)
C.(0,1)
D.(0,e)
【答案】D
【解析】設(shè)t=lnx,
則不等式f(lnx)>3lnx+1等價(jià)為f(t)>3t+1,
設(shè)g(x)=f(x)﹣3x﹣1,
則g′(x)=f′(x)﹣3,
∵f(x)的導(dǎo)函數(shù)f′(x)<3,
∴g′(x)=f′(x)﹣3<0,此時(shí)函數(shù)單調(diào)遞減,
∵f(1)=4,
∴g(1)=f(1)﹣3﹣1=0,
則當(dāng)x>1時(shí),g(x)<g(1)=0,
即g(x)<0,則此時(shí)g(x)=f(x)﹣3x﹣1<0,
即不等式f(x)>3x+1的解為x<1,
即f(t)>3t+1的解為t<1,
由lnx<1,解得0<x<e,
即不等式f(lnx)>3lnx+1的解集為(0,e),
故選:D.
構(gòu)造函數(shù)g(x)=f(x)﹣2x﹣1,求函數(shù)的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性 即可得到結(jié)論
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中錯(cuò)誤的是( )
A.若α⊥β,aα,則a⊥β
B.若m∥n,n⊥β,mα,則α⊥β
C.若α⊥γ,β⊥γ,α∩β=l,則l⊥γ
D.若α⊥β,α∩β=AB,a∥α,a⊥AB,則a⊥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一排9個(gè)座位坐了3個(gè)三口之家.若每家人坐在一起,則不同的坐法種數(shù)為( )
A.3×3!
B.3×(3!)3
C.(3!)4
D.9!
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】式子σ(a,b,c)滿足σ(a,b,c)=σ(b,c,a)=σ(c,a,b),則稱σ(a,b,c)為輪換對(duì)稱式.給出如下三個(gè)式子:①σ(a,b,c)=abc; ②σ(a,b,c)=a2﹣b2+c2; ③σ(A,B,C)=cosCcos(A﹣B)﹣cos2C(A,B,C是△ABC的內(nèi)角).其中,為輪換對(duì)稱式的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三個(gè)數(shù)a=0.32 , b=log20.3,c=20.3之間的大小關(guān)系是( 。
A.a<c<b
B.a<b<c
C.b<a<c
D.b<c<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+bsinx+4(a,b∈R),f(lg(log210))=5,則f(lg(lg2))=( )
A.﹣5
B.﹣1
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們知道:“平面中到定點(diǎn)等于定長的點(diǎn)軌跡是圓”拓展至空間:“空間中到定點(diǎn)的距離等于定長的點(diǎn)的軌跡是球”,類似可得:已知A(﹣1,0,0),B(1,0,0),則點(diǎn)集{P(x,y,z)||PA|﹣|PB|=1}在空間中的軌跡描述正確的是( )
A.以A,B為焦點(diǎn)的雙曲線繞軸旋轉(zhuǎn)而成的旋轉(zhuǎn)曲面
B.以A,B為焦點(diǎn)的橢球體
C.以A,B為焦點(diǎn)的雙曲線單支繞軸旋轉(zhuǎn)而成的旋轉(zhuǎn)曲面
D.以上都不對(duì)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com