如右圖,圓 O 的割線 PBA 過圓心 O,弦 CDPA 于點F,且△COF∽△PDF,PB = OA = 2,則PF =            .

 

【答案】

3

【解析】解:∵PB=OA=2,

∴OC=OB=2

由相交弦定理得:DF•CF=AF•BF

又∵△COF∽△PDF,

∴DF•CF=OF•PF

即AF•BF=OF•PF

即(4-BF)•BF=(2-BF)•(2+BF)

解得BF=1

故PF=PB+BF=3

故答案為:3

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

14、(選做題) 如圖,圓 O 的割線 PBA 過圓心 O,弦 CD 交 PA 于點F,且△COF∽△PDF,PB=OA=2,則PF=
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A(不等式選做題)如果關(guān)于x的不等式|x-3|-|x-4|<a的解集不是空集,則實數(shù)a的取值范圍是
 

B(幾何證明選做題)如圖,圓O的割線PBA過圓心O,弦CD交AB于點E,且△COE~△PDE,PB=OA=2,則PE的長等于
 

C(極坐標(biāo)系與參數(shù)方程選做題)圓ρ=2COSθ的圓心到直線
x=t
y=
3
t
(t為參數(shù))的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•靜?h一模)如圖,圓O的割線PA過圓心O交圓于另一點B,弦CD交OB于點E,且△COE∽△PDE,PB=OA=2,則PE的長等于
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題(請考生在以下三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分)
A.(選修4-4坐標(biāo)系與參數(shù)方程)若M,N分別是曲線ρ=2cosθ和ρsin(θ-
π
4
)=
2
2
上的動點,則M,N兩點間的距離的最小值是
2
-1
2
-1

B.(選修4-5 不等式選講)若不等式|x+
1
x
|>|a-2|+1
對于一切非零實數(shù)x均成立,則實數(shù)a的取值范圍為
1<a<3
1<a<3

C.(選修4-1 幾何證明選講)(幾何證明選做題)如圖,圓O的割線PBA過圓心O,弦CD交AB于點E,且△COE~△PDE,PB=OA=2,則PE的長等于
3
3

查看答案和解析>>

同步練習(xí)冊答案