【題目】某公司的電子新產(chǎn)品未上市時(shí),原定每件售價(jià)100元,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),該電子新產(chǎn)品市場(chǎng)潛力很大,該公司決定從第一周開(kāi)始銷售時(shí),該電子產(chǎn)品每件售價(jià)比原定售價(jià)每周漲價(jià)4元,5周后開(kāi)始保持120元的價(jià)格平穩(wěn)銷售,10周后由于市場(chǎng)競(jìng)爭(zhēng)日益激烈,每周降價(jià)2元,直到15周結(jié)束,該產(chǎn)品不再銷售.

(Ⅰ)求售價(jià)(單位:元)與周次)之間的函數(shù)關(guān)系式;

(Ⅱ)若此電子產(chǎn)品的單件成本(單位:元)與周次之間的關(guān)系式為,,,試問(wèn):此電子產(chǎn)品第幾周的單件銷售利潤(rùn)(銷售利潤(rùn)售價(jià)成本)最大?

【答案】(Ⅰ);(Ⅱ)第10

【解析】

(Ⅰ)根據(jù)題意,結(jié)合分段情況即可求得解析式.

(Ⅱ)根據(jù)售價(jià)解析式及成本解析式,先表示出利潤(rùn)的函數(shù)解析式.結(jié)合二次函數(shù)性質(zhì)即可求得最大值及對(duì)應(yīng)的時(shí)間.

(Ⅰ)當(dāng)時(shí),;

當(dāng)時(shí),;

當(dāng)時(shí),.

所以.

(Ⅱ)由于單件電子產(chǎn)品的銷售利潤(rùn)售價(jià)成本,即單件銷售利潤(rùn),

所以,當(dāng)時(shí),.

此時(shí)單調(diào)遞增,所以當(dāng)時(shí),取得最大值.

當(dāng)時(shí),.

當(dāng)時(shí),取得最大值.

當(dāng)時(shí),.

當(dāng)時(shí),取得最大值20.

綜上,該電子產(chǎn)品第10周時(shí)單件銷售利潤(rùn)最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且asinB=bsin(A+).

(1)求A;

(2)若b,a,c成等差數(shù)列,△ABC的面積為2,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計(jì)圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計(jì)圖,下列對(duì)統(tǒng)計(jì)圖理解錯(cuò)誤的是( )

A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬(wàn)件

B. 2018年1~4月的業(yè)務(wù)量同比增長(zhǎng)率均超過(guò)50%,在3月底最高

C. 從兩圖來(lái)看,2018年1~4月中的同一個(gè)月的快遞業(yè)務(wù)量與收入的同比增長(zhǎng)率并不完全一致

D. 從1~4月來(lái)看,該省在2018年快遞業(yè)務(wù)收入同比增長(zhǎng)率逐月增長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在測(cè)量一根新彈簧的勁度系數(shù)時(shí),測(cè)得了如下的結(jié)果:

所掛重量()(x

1

2

3

5

7

9

彈簧長(zhǎng)度()(y

11

12

12

13

14

16

1)請(qǐng)?jiān)谙聢D坐標(biāo)系中畫出上表所給數(shù)據(jù)的散點(diǎn)圖;

2)若彈簧長(zhǎng)度與所掛物體重量之間的關(guān)系具有線性相關(guān)性,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

3)根據(jù)回歸方程,求掛重量為的物體時(shí)彈簧的長(zhǎng)度.所求得的長(zhǎng)度是彈簧的實(shí)際長(zhǎng)度嗎?為什么?

注:本題中的計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位.

(參考公式:,

(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓錐的軸截面是等腰直角三角形,底面半徑為1,點(diǎn)是圓心,過(guò)頂點(diǎn)的截面與底面所成的二面角大小是.

1)求點(diǎn)到截面的距離;

2)點(diǎn)為圓周上一點(diǎn),且,中點(diǎn),求異面直線所成角的大小.(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)判斷的奇偶性,并證明;

2)用定義證明函數(shù)上單調(diào)遞減;

3)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線 , ,和兩點(diǎn)0,1),-1,0),給出如下結(jié)論:

①不論為何值時(shí), 都互相垂直;

②當(dāng)變化時(shí), 分別經(jīng)過(guò)定點(diǎn)A0,1)和B-1,0);

③不論為何值時(shí), 都關(guān)于直線對(duì)稱;

④如果交于點(diǎn),則的最大值是1

其中,所有正確的結(jié)論的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓與直線,動(dòng)直線過(guò)定點(diǎn).

1)若直線與圓相切,求直線的方程;

2)若直線與圓相交于、兩點(diǎn),點(diǎn)MPQ的中點(diǎn),直線與直線相交于點(diǎn)N.探索是否為定值,若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)孩子的身高與年齡(周歲)具有相關(guān)關(guān)系,根據(jù)所采集的數(shù)據(jù)得到線性回歸方程,則下列說(shuō)法錯(cuò)誤的是(

A.回歸直線一定經(jīng)過(guò)樣本點(diǎn)中心

B.斜率的估計(jì)值等于6.217,說(shuō)明年齡每增加一個(gè)單位,身高就約增加6.217個(gè)單位

C.年齡為10時(shí),求得身高是,所以這名孩子的身高一定是

D.身高與年齡成正相關(guān)關(guān)系

查看答案和解析>>

同步練習(xí)冊(cè)答案