【題目】現(xiàn)有0,1,2,3,4,5六個數(shù)字.
(1)用所給數(shù)字能夠組成多少個四位數(shù)?
(2)用所給數(shù)字可以組成多少個沒有重復(fù)數(shù)字的五位數(shù)?
(3)用所給數(shù)字可以組成多少個沒有重復(fù)數(shù)字且比3142大的數(shù)?(最后結(jié)果均用數(shù)字作答)

【答案】
(1)解:能夠組成四位數(shù)的個數(shù)為:5×6×6×6=1080
(2)解:能組成沒有重復(fù)數(shù)字的五位數(shù)的個數(shù)為: =600
(3)解:比3142大的數(shù)包含四位數(shù)、五位數(shù)和六位數(shù),其中:

六位數(shù)有: ;

五位數(shù)有: =600;

四位數(shù)有千位是4或5的,千位是3的,而千位是4或5的有 ;

千位是3的分為百位是2、4、5的與百位是1的,

百位是2、4、5的有 ,

百位是1的分為十位是4和5兩種情況,十位是5的有3種,十位是4的有1種,

所以共有600+600+120+36+3+1=1360.

答:能組成四位數(shù)1080個;沒有重復(fù)數(shù)字的五位數(shù)600個;比3142大的數(shù)1360個


【解析】(1)利用分步計(jì)數(shù)原理,第一步先排首位(因?yàn)榱悴荒茉偈孜唬,再排其它三個位值,注意數(shù)字可以重復(fù),(2)利用分步計(jì)數(shù)原理,第一步先排首位(因?yàn)榱悴荒茉偈孜唬,再排其它四個位值,注意數(shù)字不可以重復(fù),(3)利用分類計(jì)數(shù)原理,比3142大的數(shù)包含四位數(shù)、五位數(shù)和六位數(shù),然后再分類求出即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以軸正半軸為始邊的銳角和鈍角的終邊分別與單位圓交于點(diǎn),若點(diǎn)的橫坐標(biāo)是,點(diǎn)的縱坐標(biāo)是.

(1)求的值;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某旅游區(qū)擬建一主題游樂園,該游樂區(qū)為五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為主題游樂區(qū),四邊形區(qū)域?yàn)锽CDE為休閑游樂區(qū),AB、BC,CD,DE,EA,BE為游樂園的主要道路不考慮寬.

I求道路BE的長度;

求道路AB,AE長度之和的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋子中裝有個形狀相同的小球,分別標(biāo)有不同的數(shù)字,現(xiàn)從袋中隨機(jī)摸出個球,并計(jì)算摸出的這個球上的數(shù)字之和,記錄后將小球放回袋中攪勻,進(jìn)行重復(fù)試驗(yàn).記事件為“數(shù)字之和為”.試驗(yàn)數(shù)據(jù)如下表

(1)如果試驗(yàn)繼續(xù)下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“數(shù)字之和為的頻率將穩(wěn)定在它的概率附近.試估計(jì)“出現(xiàn)數(shù)字之和為”的概率,并求的值;

(2)在(1)的條件下,設(shè)定一種游戲規(guī)則:每次摸球,若數(shù)字和為,則可獲得獎金元,否則需交元.某人摸球次,設(shè)其獲利金額為隨機(jī)變量元,求的數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,

(1)證明數(shù)列是等比數(shù)列;

(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公車私用、超編配車等現(xiàn)象一直飽受詬病,省機(jī)關(guān)事務(wù)管理局認(rèn)真貫徹落實(shí)黨中央、國務(wù)院有關(guān)公務(wù)用車配備使用管理辦法,積極推進(jìn)公務(wù)用車制度改革.某機(jī)關(guān)單位有車牌尾號為2的汽車A和尾號為6的汽車B,兩車分屬于兩個獨(dú)立業(yè)務(wù)部門.為配合用車制度對一段時間內(nèi)兩輛汽車的用車記錄進(jìn)行統(tǒng)計(jì),在非限行日,A車日出車頻率0.6,B車日出車頻率0.5,該地區(qū)汽車限行規(guī)定如下:

車尾號

0和5

1和6

2和7

3和8

4和9

限行日

星期一

星期二

星期三

星期四

星期五

現(xiàn)將汽車日出車頻率理解為日出車概率,且A,B兩車出車情況相互獨(dú)立.
(1)求該單位在星期一恰好出車一臺的概率;
(2)設(shè)X表示該單位在星期一與星期二兩天的出車臺數(shù)之和,求X的分布列及其數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)= ,則使得f(x)﹣ex﹣m≤0恒成立的m的取值范圍是(
A.(﹣∞,2)
B.(﹣∞,2]
C.(2,+∞)
D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)求函數(shù)上的最大值;

(Ⅲ)求證:存在唯一的,使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列類比推理的結(jié)論正確的是(
①類比“實(shí)數(shù)的乘法運(yùn)算滿足結(jié)合律”,得到猜想“向量的數(shù)量積運(yùn)算滿足結(jié)合律”;
②類比“平面內(nèi),同垂直于一直線的兩直線相互平行”,得到猜想“空間中,同垂直于一直線的兩直線相互平行”;
③類比“設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 則S4 , S8﹣S4 , S12﹣S8成等差數(shù)列”,得到猜想“設(shè)等比數(shù)列{bn}的前n項(xiàng)積為Tn , 則T4 , , 成等比數(shù)列”;
④類比“設(shè)AB為圓的直徑,p為圓上任意一點(diǎn),直線PA,PB的斜率存在,則kPA . kPB為常數(shù)”,得到猜想“設(shè)AB為橢圓的長軸,p為橢圓上任意一點(diǎn),直線PA,PB的斜率存在,則kPA . kPB為常數(shù)”.
A.①②
B.③④
C.①④
D.②③

查看答案和解析>>

同步練習(xí)冊答案