12.設(shè)集合U={0,1,2,3},A={x|x2-x=0},則∁UA={2,3}.

分析 先化簡集合A,再求A在U中的補(bǔ)集.

解答 解:∵集合U={0,1,2,3},
A={x|x2-x=0}={x|x=0或x=1}={0,1},
∴∁UA={2,3}.
故答案為:{2,3}.

點(diǎn)評(píng) 本題考查了集合的化簡與簡單運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點(diǎn)P($\frac{4}{3}$,$\frac{1}{3}$),橢圓C的方程為$\frac{{x}^{2}}{2}$+y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知向量$\overrightarrow m=(2cosωx,-1),\overrightarrow n=(sinωx-cosωx,2)$(ω>0),函數(shù)f(x)=$\overrightarrow m•\overrightarrow n+3$,若函數(shù)f(x)的圖象的兩個(gè)相鄰對(duì)稱中心的距離為$\frac{π}{2}$.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)若將函數(shù)f(x)的圖象先向左平移$\frac{π}{4}$個(gè)單位,然后縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的$\frac{1}{2}$倍,得到函數(shù)g(x)的圖象,當(dāng)$x∈[\frac{π}{4},\frac{π}{2}]$時(shí),求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.用min{a,b}表示a,b兩個(gè)數(shù)中的最小值,設(shè)f(x)=min{-x-2,x-4},則f(x)的最大值為( 。
A.-2B.-3C.-4D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)P:c2-c-2<0;q:函數(shù)y=x2-2cx+1在[$\frac{1}{2}$,+∞)上為增函數(shù),若“p∧q”為假,“p∨q”為真,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.實(shí)系數(shù)一元二次方程ax2+bx+c=0,則“ac<0”是“該方程有實(shí)數(shù)根”的充分不必要條件(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中選擇一個(gè)合適的填寫).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)y=$\frac{1}{x-1}$,那么( 。
A.函數(shù)的單調(diào)遞減區(qū)間為(-∞,1),(1,+∞)B.函數(shù)的單調(diào)遞減區(qū)間為(-∞,1]∪(1,+∞)
C.函數(shù)的單調(diào)遞增區(qū)間為(-∞,1),(1,+∞)D.函數(shù)的單調(diào)遞增區(qū)間為(-∞,1]∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若直線mx-2y-1=0經(jīng)過第一、三、四象限,則實(shí)數(shù)m的取值范圍是m>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)數(shù)列{an}的前n項(xiàng)的和Sn=$\frac{4}{3}$an-$\frac{1}{3}$×2n+1+$\frac{2}{3}$(n=1,2,3,…)
(Ⅰ)求首項(xiàng)a1
(Ⅱ)證明數(shù)列{an+2n}是等比數(shù)列并求an

查看答案和解析>>

同步練習(xí)冊(cè)答案