已知橢圓C:+=1(a>b>0),F(,0)為其右焦點(diǎn),過F且垂直于x軸的直線與橢圓相交所得的弦長(zhǎng)為2.則橢圓C的方程為________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
直線y=x+m與圓x2+y2=16交于不同的兩點(diǎn)M,N,且,其中O是坐標(biāo)原點(diǎn),則實(shí)數(shù)m的取值范圍是( )
A.(-2,-]∪[,2)
B.(-4,-2]∪[2,4)
C.[-2,2]
D.[-2,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線y2=4x上一點(diǎn)M與該拋物線的焦點(diǎn)F的距離|MF|=4,則點(diǎn)M的橫坐標(biāo)x0=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,動(dòng)點(diǎn)M與兩定點(diǎn)A(-1,0),B(1,0)構(gòu)成△MAB,且直線MA,MB的斜率之積為4,設(shè)動(dòng)點(diǎn)M的軌跡為C,試求軌跡C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
橢圓+=1的離心率為e,點(diǎn)(1,e)是圓x2+y2-4x-4y+4=0的一條弦的中點(diǎn),則此弦所在直線的方程是( )
A.3x+2y-4=0 B.4x+6y-7=0
C.3x-2y-2=0 D.4x-6y-1=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:+=1(a>b>0)的離心率為,橢圓C的短軸的一個(gè)端點(diǎn)P到焦點(diǎn)的距離為2.
(1)求橢圓C的方程;
(2)已知直線l:y=kx+與橢圓C交于A,B兩點(diǎn),是否存在k使得以線段AB為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某中學(xué)有高中生3 500人,初中生1 500人.為了解學(xué)生的學(xué)習(xí)情況,用分層抽樣的方法從該校學(xué)生中抽取一個(gè)容量為n的樣本,已知從高中生中抽取70人,則n為( )
A.100 B.150
C.200 D.250
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
高三某班學(xué)生每周用于物理學(xué)習(xí)的時(shí)間x(單位:小時(shí))與物理成績(jī)y(單位:分)之間有如下關(guān)系:
x | 24 | 15 | 23 | 19 | 16 | 11 | 20 | 16 | 17 | 13 |
y | 92 | 79 | 97 | 89 | 64 | 47 | 83 | 68 | 71 | 59 |
根據(jù)上表可得回歸方程的斜率為3.53,則回歸直線在y軸上的截距為________.(答案保留到0.1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com