解答題:解答應(yīng)寫出文字說明、證明過程或演算步驟.

已知向量,定義函數(shù)(a>0,a≠1).

(1)

求函數(shù)f(x)的最小正周期

(2)

求函數(shù)f(x)的最大值或最小值及此時對應(yīng)的x的值

(3)

確定函數(shù)f(x)的單調(diào)遞增區(qū)間.

答案:
解析:

(1)

解:

………………………………(3分)

…………………………………………………(4分)

(2)

解:令

時,當(dāng)時,函數(shù)

…………………………………………………………(6分)

時,當(dāng)時,函數(shù)

…………………………………………………………(8分)

(3)

解:由

確定單調(diào)遞增的正值區(qū)間是;

確定單調(diào)遞減的正值區(qū)間是;………(10分)

綜上,當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間為

當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間為.……(12分)

注:①

的這些等價形式中,以最好用.因為復(fù)合函數(shù)的中間變量是增函數(shù),對求的單調(diào)區(qū)間來說,只看外層函數(shù)的單調(diào)性即可.否則,利用的其它形式,例如求單調(diào)區(qū)間是非常容易出錯的.同學(xué)們可以嘗試做一下的其它形式,認真體會,比較優(yōu)劣!

②今后遇到求類似的單調(diào)區(qū)間問題,應(yīng)首先通過誘導(dǎo)公式將轉(zhuǎn)化為標(biāo)準(zhǔn)形式:(其中A>0,ω>0),然后再行求解,保險系數(shù)就大了.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:山西省實驗中學(xué)2006-2007學(xué)年度第一學(xué)期高三年級第三次月考 數(shù)學(xué)試題 題型:044

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟

(1)

(理)已知數(shù)列相鄰兩項an,an+1是方程的兩根(n∈N+)且a1=2,Sn=c1+c2+…+cn,求an與S2n

(2)

(文)已知f(x)=x2-4x+3,又f(x-1),,f(x)是一個遞增等差數(shù)列{an}的前3項

(1)求此數(shù)列的通項公式

(2)求a2+a5+a8+…+a26的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省信陽市商城高中2006-2007學(xué)年度高三數(shù)學(xué)單元測試、不等式二 題型:044

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

證明下列不等式:

(文)若xy,z∈R,a,bc∈R+,則z2≥2(xyyzzx)

(理)若x,y,z∈R+,且xyzxyz,則≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省信陽市商城高中2006-2007學(xué)年度高三數(shù)學(xué)單元測試、不等式二 題型:044

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

設(shè)f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0,求證:

(1)

方程f(x)=0有實根.

(2)

a>0且-2<<-1;

(3)

(理)方程f(x)=0在(0,1)內(nèi)有兩個實根.

(文)設(shè)x1,x2是方程f(x)=0的兩個實根,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學(xué)沖刺預(yù)測卷(四)附答案 題型:044

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

已知函數(shù)f(x)的圖像與函數(shù)的圖像關(guān)于點A(0,1)對稱.

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)·x+ax,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍;

(理)若,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學(xué)沖刺預(yù)測卷(四)附答案 題型:044

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

如圖,直角梯形ABCD中∠DAB=90°,ADBC,AB=2,AD,BC.橢圓CAB為焦點且經(jīng)過點D

(1)建立適當(dāng)坐標(biāo)系,求橢圓C的方程;

(2)(文)是否存在直線l與橢圓C交于M、N兩點,且線段MN的中點為C,若存在,求l與直線AB的夾角,若不存在,說明理由.

(理)若點E滿足,問是否存在不平行AB的直線l與橢圓C交于M、N兩點且|ME|=|NE|,若存在,求出直線lAB夾角的范圍,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案