12.如圖,在三棱錐P-ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC內(nèi),∠OPC=45°,∠OPA=60°,則∠OPB的余弦值為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{6}}{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

分析 根據(jù)棱錐的結(jié)構(gòu)特征我們易判斷出這是一個(gè)有三條棱在P點(diǎn)兩兩垂直的三棱錐,由已知中O在△ABC內(nèi),∠OPC=45°,∠OPA=60°,利用“三余弦”定理,我們易求出∠OPB的余弦值.

解答 解:已知如圖所示:過O做平面PBC的垂線,交平面PBC于Q,連接PQ
則∠OPQ=90°-45°=45°.
∵cos∠OPA=cos∠QPA×cos∠OPQ,
∴cos∠QPA=$\frac{\sqrt{2}}{2}$,
∴∠QPA=45°,
∴∠QPB=45°
∴cos∠OPB=cos∠OPQ×cos∠QPB=$\frac{1}{2}$.
故選C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是棱錐的結(jié)構(gòu)特征,其中利用“三余弦”定理是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義在實(shí)數(shù)集R上的奇函數(shù)分f(x),對任意實(shí)數(shù)x都有$f(\frac{3}{2}-x)=f(x)$,且滿足f(1)>-2,$f(2)=m-\frac{3}{m}$,則實(shí)數(shù)m的取值范圍是(  )
A.0<m<3或m<-1B.0<m<3C.-1<m<3D.m>3或m<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知實(shí)數(shù)1,m,16構(gòu)成一個(gè)等比數(shù)列,則圓錐曲線x2+$\frac{{y}^{2}}{m}$=1的離心率為$\frac{\sqrt{3}}{2}$或$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若f(x)是定義在(0,+∞)上的增函數(shù),且f($\frac{x}{y}$)=f(x)-f(y).
(Ⅰ)求f(1)的值;
(Ⅱ)解不等式:f(x-1)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知空間中的直線m、n和平面α,且m⊥α.則“m⊥n”是“n?α”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線l:4x-y-6=0交雙曲線x2-$\frac{{y}^{2}}{4}$=1于A,B兩點(diǎn),則線段AB的長為$\frac{2\sqrt{102}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.要得到函數(shù)y=$\sqrt{2}$cos2x的圖象,只需將函數(shù)y=$\sqrt{2}$sin(4x+$\frac{π}{4}$)的圖象上所有點(diǎn)的(  )
A.橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),再向左平行移動(dòng)$\frac{π}{8}$個(gè)單位長度
B.橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),再向左平行移動(dòng)$\frac{π}{4}$個(gè)單位長度
C.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向左平行移動(dòng)$\frac{π}{8}$個(gè)單位長度
D.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向左平行移動(dòng)$\frac{π}{4}$個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.為了了解某地區(qū)心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)對入院的50人進(jìn)行了問卷調(diào)查,得到了如下的2×2列聯(lián)表:
患心肺疾病患心肺疾病合計(jì)
20525
101525
合計(jì)302050
(1)用分層抽樣的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?
(2)在上述抽取的6人中選2人,求恰有一名女性的概率;
(3)為了研究心肺疾病是否與性別有關(guān),請計(jì)算統(tǒng)計(jì)量k2,判斷心肺疾病與性別是否有關(guān)?
p(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:臨界值表參考公式:k2=$\frac{{n(ad-bc{)^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=2x,g(x)=-$\frac{3x-1}{x}$,則f(x)•g(x)=2-6x,(x≠0).

查看答案和解析>>

同步練習(xí)冊答案