【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(Ⅰ)證明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.
【答案】解:如圖,以D為坐標(biāo)原點(diǎn),線段DA的長為單位長,射線DA為x軸的正半軸建立空間直角坐標(biāo)系D﹣xyz;
(Ⅰ)依題意有Q(1,1,0),C(0,0,1),P(0,2,0);
則 =(1,1,0), =(0,0,1), =(1,﹣1,0),
所以 =0, =0;
即PQ⊥DQ,PQ⊥DC,
故PQ⊥平面DCQ,
又PQ平面PQC,所以平面PQC⊥平面DCQ;
(Ⅱ)依題意,有B(1,0,1),
=(1,0,0), =(﹣1,2,﹣1);
設(shè) =(x,y,z)是平面的PBC法向量,
則 即 ,
因此可取 =(0,﹣1,﹣2);
設(shè) 是平面PBQ的法向量,則 ,
可取 =(1,1,1),
所以cos< , >=﹣ ,
故二面角角Q﹣BP﹣C的余弦值為﹣ .
【解析】首先根據(jù)題意以D為坐標(biāo)原點(diǎn),線段DA的長為單位長,射線DA為x軸的正半軸建立空間直角坐標(biāo)系D﹣xyz;
(Ⅰ)根據(jù)坐標(biāo)系,求出 、 、 的坐標(biāo),由向量積的運(yùn)算易得 =0, =0;進(jìn)而可得PQ⊥DQ,PQ⊥DC,由面面垂直的判定方法,可得證明;(Ⅱ)依題意結(jié)合坐標(biāo)系,可得B、 、 的坐標(biāo),進(jìn)而求出平面的PBC的法向量 與平面PBQ法向量 ,進(jìn)而求出cos< , >,根據(jù)二面角與其法向量夾角的關(guān)系,可得答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的首項(xiàng)a1為常數(shù),且an+1=3n﹣2an , (n∈N*)
(1)證明:{an﹣ }是等比數(shù)列;
(2)若a1= ,{an}中是否存在連續(xù)三項(xiàng)成等差數(shù)列?若存在,寫出這三項(xiàng),若不存在說明理由.
(3)若{an}是遞增數(shù)列,求a1的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=﹣ sinx cosx+1 (Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)若x∈[0, ],且f(x)= ,求cosx的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠每日生產(chǎn)一種大型產(chǎn)品1件,每件產(chǎn)品的投入成本為2000元.產(chǎn)品質(zhì)量為一等品的概率為,二等品的概率為,每件一等品的出廠價為10000元,每件二等品的出廠價為8000元.若產(chǎn)品質(zhì)量不能達(dá)到一等品或二等品,除成本不能收回外,沒生產(chǎn)一件產(chǎn)品還會帶來1000元的損失.
(1)求在連續(xù)生產(chǎn)3天中,恰有一天生產(chǎn)的兩件產(chǎn)品都為一等品的的概率;
(2)已知該廠某日生產(chǎn)的2件產(chǎn)品中有一件為一等品,求另一件也為一等品的概率;
(3)求該廠每日生產(chǎn)該種產(chǎn)品所獲得的利潤(元)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)設(shè),求的最小值;
(2)若曲線與僅有一個交點(diǎn),證明:曲線與在點(diǎn)處有相同的切線,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(為自然對數(shù)的底數(shù)),, .
(1)若是的極值點(diǎn),且直線分別與函數(shù)和的圖象交于,求兩點(diǎn)間的最短距離;
(2)若時,函數(shù)的圖象恒在的圖象上方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:方程x2+y2﹣ax+y+1=0表示圓;命題q:方程2ax+(1﹣a)y+1=0表示斜率大于1的直線,若p∨q為真命題,p∧q為假命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,F(xiàn)1 , F2是雙曲線C: (a>0,b>0)的左、右焦點(diǎn),過F1的直線l與C的左、右兩支分別交于A,B兩點(diǎn).若△ABF2為等邊三角形,則雙曲線的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB= ,BC=1,P為△ABC內(nèi)一點(diǎn),∠BPC=90°.
(1)若PB= ,求PA;
(2)若∠APB=150°,求tan∠PBA.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com