5.已知實數(shù)x,y滿足$\left\{{\begin{array}{l}{x-4y+3≤0}\\{3x+5y-25≤0}\\{x≥1}\end{array}}\right.$,記z=ax-y(其中a>0)的最小值為f(a).若$f(a)≥\frac{3}{5}$,則實數(shù)a的最小值為( 。
A.3B.4C.5D.6

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)求得f(a),再由$f(a)≥\frac{3}{5}$求得實數(shù)a的最小值.

解答 解:由約束條件$\left\{{\begin{array}{l}{x-4y+3≤0}\\{3x+5y-25≤0}\\{x≥1}\end{array}}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x=1}\\{3x+5y-25=0}\end{array}\right.$,得A(1,$\frac{22}{5}$),
由z=ax-y,得y=ax-z,由圖可知,當(dāng)直線y=ax-z過A時,直線在y軸上的截距最大,
z有最小值為f(a)=a-$\frac{22}{5}$.
由$f(a)≥\frac{3}{5}$,得$a-\frac{22}{5}≥\frac{3}{5}$,∴a≥5,即a的最小值為5,
故選:C.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2,AB=2$\sqrt{2}$.
(1)求異面直線PC與AD所成角的大;
(2)若平面ABCD內(nèi)有一經(jīng)過點C的曲線E,該曲線上的任一動點Q都滿足PQ與AD所成角的大小恰等于PC與AD所成角.試判斷曲線E的形狀并說明理由;
(3)在平面ABCD內(nèi),設(shè)點Q是(2)題中的曲線E在直角梯形ABCD內(nèi)部(包括邊界)的一段曲線CG上的動點,其中G為曲線E和DC的交點.以B為圓心,BQ為半徑r的圓分別與梯形的邊AB、BC交于M、N兩點.當(dāng)Q點在曲線段CG上運動時,試求圓半徑r的范圍及VP-BMN的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$sin(\frac{π}{2}+x)=\frac{5}{13}$,且x是第四象限角,則sinx的值等于( 。
A.$-\frac{12}{13}$B.$-\frac{5}{13}$C.$\frac{12}{13}$D.$\frac{5}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.計算:
(1)log225•log32$\sqrt{2}$•log59;
(2)(2$\frac{3}{5}$)0+2-2×(2$\frac{1}{4}$)${\;}^{-\frac{1}{2}}$-0.250.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=xln(x-1)-a,下列說法正確的是( 。
A.當(dāng)a=0時,f(x)沒有零點B.當(dāng)a<0時,f(x)有零點x0,且x0∈(2,+∞)
C.當(dāng)a>0時,f(x)有零點x0,且x0∈(1,2)D.當(dāng)a>0時,f(x)有零點x0,且x0∈(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和為Sn,且對任意正整數(shù)n,都有an=$\frac{3}{4}{S_n}$+2成立.
(1)記bn=log2an,求數(shù)列{bn}的通項公式;
(2)設(shè)cn=$\frac{1}{{{b_n}{b_{n+1}}}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.等差數(shù)列{an}中,Sn是其前n項和,a1=-9,$\frac{S_9}{9}-\frac{S_7}{7}$=2,則S10=(  )
A.0B.-9C.10D.-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若實數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ 2x+y-4≥0\\ x≤2\end{array}\right.$時,z=x+y的最小值為( 。
A.4B.3C.2D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列說法正確的是( 。
A.“x2+x-2>0”是“x>1”的充分不必要條件
B.“若am2<bm2,則a<b”的逆否命題為真命題
C.命題“?x∈R,使得2x2-1<0”的否定是“?x∈R,均有2x2-1>0”
D.命題“若x=$\frac{π}{4}$,則tanx=1”的逆命題為真命題

查看答案和解析>>

同步練習(xí)冊答案