13.計(jì)算:
(1)log225•log32$\sqrt{2}$•log59;
(2)(2$\frac{3}{5}$)0+2-2×(2$\frac{1}{4}$)${\;}^{-\frac{1}{2}}$-0.250.5

分析 (1)利用對(duì)數(shù)換底公式、對(duì)數(shù)的運(yùn)算性質(zhì)即可得出.
(2)利用對(duì)數(shù)換底公式、對(duì)數(shù)的運(yùn)算性質(zhì)即可得出.

解答 解:(1)原式=$\frac{2lg5}{lg2}×\frac{\frac{3}{2}lg2}{lg3}×\frac{2lg3}{lg5}$=6.
(2)原式=1+$\frac{1}{4}$×$(\frac{2}{3})^{-2×(-\frac{1}{2})}$-$(\frac{1}{2})^{2×0.5}$
=1+$\frac{1}{6}$-$\frac{1}{2}$
=$\frac{2}{3}$.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)換底公式、對(duì)數(shù)的運(yùn)算性質(zhì)、指數(shù)冪的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)y=1+|x|的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.$\sqrt{5}$+2與$\sqrt{5}$-2兩數(shù)的等比中項(xiàng)是(  )
A.1B.-1C.±1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)$f(x)=\sqrt{2}{sin^2}x-\sqrt{2}sinx•cosx-\frac{{\sqrt{2}}}{2}$.
(1)求函數(shù)y=f(x)的解析式,并用“五點(diǎn)法作圖”在給出的直角坐標(biāo)系中畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象;
(2)設(shè)α∈(0,π),f($\frac{α}{2}$)=$-\frac{1}{2}$,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)y=ax+3(a>0且a≠1)圖象一定過(guò)定點(diǎn)( 。
A.(0,2)B.(0,4)C.(2,0)D.(4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.一幾何體的三視圖如下,求這個(gè)幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{x-4y+3≤0}\\{3x+5y-25≤0}\\{x≥1}\end{array}}\right.$,記z=ax-y(其中a>0)的最小值為f(a).若$f(a)≥\frac{3}{5}$,則實(shí)數(shù)a的最小值為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知$cos({\frac{π}{6}-θ})=\frac{{2\sqrt{2}}}{3}$,則$cos({\frac{π}{3}+θ})$=$±\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=x3+x,函數(shù)g(x)滿足g(x)+g(2-x)=0,若函數(shù)h(x)=g(x)-f(x-1)有10個(gè)零點(diǎn),則所有零點(diǎn)之和為10.

查看答案和解析>>

同步練習(xí)冊(cè)答案