【題目】一半徑為4.8米的水輪如圖所示,水輪圓心距離水面2.4米,已知水輪每60秒逆時(shí)針轉(zhuǎn)動(dòng)一圈,如果當(dāng)水輪上點(diǎn)從水中浮現(xiàn)時(shí)(圖中點(diǎn))開始計(jì)時(shí),則(

A.點(diǎn)第一次到達(dá)最高點(diǎn)需要10

B.在水輪轉(zhuǎn)動(dòng)的一圈內(nèi),有20秒的時(shí)間,點(diǎn)距離水面的高度不低于4.8

C.點(diǎn)距離水面的高度(米)與(秒)的函數(shù)解析式為

D.當(dāng)水輪轉(zhuǎn)動(dòng)50秒時(shí),點(diǎn)在水面下方,距離水面1.2

【答案】BC

【解析】

先由題意求出點(diǎn)距離水面的高度(米)與(秒)的函數(shù)解析式為,再結(jié)合函數(shù)解析式逐一判斷即可.

解:對(duì)于選項(xiàng)C,由題意可得:點(diǎn)距離水面的高度(米)與(秒)的函數(shù)解析式為,即選項(xiàng)C正確;

對(duì)于選項(xiàng)A,令,解得:,即點(diǎn)第一次到達(dá)最高點(diǎn)需要20秒,即選項(xiàng)A錯(cuò)誤;

對(duì)于選項(xiàng)B,令,解得,

即在水輪轉(zhuǎn)動(dòng)的一圈內(nèi),有20秒的時(shí)間,點(diǎn)距離水面的高度不低于4.8米,即B正確;

對(duì)于選項(xiàng)D,因?yàn)?/span> ,即點(diǎn)在水面下方,距離水面2.4米,所以D錯(cuò)誤,

綜上可得選項(xiàng)B,C正確,

故選:BC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為等比數(shù)列的前項(xiàng)和,,若數(shù)列也是等比數(shù)列,則等于( )

A. 2n B. 3n C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018614日,國(guó)際足聯(lián)世界杯足球賽在俄羅斯舉行了第21屆賽事.雖然中國(guó)隊(duì)一如既往地成為了看客,但中國(guó)球迷和參賽的32支隊(duì)伍所在國(guó)球迷一樣,對(duì)本屆球賽熱情似火,在614日開幕式的第二天,我校足球社團(tuán)從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對(duì)是否收看開幕式情況進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:

收看

沒收看

男生

60

20

女生

20

20

1)根據(jù)上表說明,能否有99%的把握認(rèn)為,是否收看開幕式與性別有關(guān)?

2)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法,選取12人參加志愿者宣傳活動(dòng).

i)問男、女學(xué)生各選取了多少人?

(ⅱ)若從這12人中隨機(jī)選取3人到校廣播站開展足球項(xiàng)目的宣傳介紹,設(shè)選取的3人中女生人數(shù)為X,寫出X的分布列,并求.

附:,其中.

0.10

0.05

0.025

0.01

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為,曲線的參數(shù)方程是為參數(shù)).

(1)求直線l和曲線的普通方程;

(2)設(shè)直線l和曲線交于兩點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:度),以,,,,,分組的頻率分布直方圖如圖所示.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,點(diǎn)內(nèi)(包括邊界)的一動(dòng)點(diǎn),且,則的最大值為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若存在實(shí)數(shù),使得等式對(duì)于定義域內(nèi)的任意實(shí)數(shù)均成立,則稱函數(shù)為“可平衡”函數(shù),有序數(shù)對(duì)稱為函數(shù)的“平衡”數(shù)對(duì).

(1)若,判斷是否為“可平衡”函數(shù),并說明理由;

(2)若,均為的“可平衡”數(shù)對(duì),當(dāng)時(shí),方程有兩個(gè)不相等的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的焦距為2,左頂點(diǎn)與上頂點(diǎn)連線的斜率為

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)過點(diǎn)Pm,0)作圓x2+y21的一條切線l交橢圓CM,N兩點(diǎn),當(dāng)|MN|的值最大時(shí),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1求曲線在點(diǎn)處的切線方程

2求證:存在唯一的,使得曲線在點(diǎn)處的切線的斜率為;

3比較的大小,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案