設(shè)橢圓的左、右焦點(diǎn)分別為。過的直線兩點(diǎn),且成等差數(shù)列.
(1)求;           (2)若直線的斜率為1,求.
(1);    (2)
本試題主要是考查了橢圓的定義,以及直線與橢圓的位置關(guān)系的綜合運(yùn)用
(1)因?yàn)闄E圓的左、右焦點(diǎn)分別為。過的直線兩點(diǎn),且成等差數(shù)列.結(jié)合定義得到|AB|的值。
(2)聯(lián)立方程組,然后結(jié)合韋達(dá)定理,得到根與系數(shù)的關(guān)系,然后直線的斜率為1,得到弦長(zhǎng)公式的表達(dá)式,從而的得到參數(shù)m的值。
解:(1)由橢圓定義知
……4分
(2)設(shè)的方程為y=x+c,其中……5分
設(shè)

化簡(jiǎn)得
……8分
因?yàn)橹本AB的斜率為1,所以
即   ……10分

解得          ……12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右頂點(diǎn)為,過的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)為

(I)求橢圓的方程;
(II)設(shè)拋物線的焦點(diǎn)為F,過F點(diǎn)的直線交拋物線與A、B兩點(diǎn),過A、B兩點(diǎn)分別作拋物線的切線交于Q點(diǎn),且Q點(diǎn)在橢圓上,求面積的最值,并求出取得最值時(shí)的拋物線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知經(jīng)過橢圓的焦點(diǎn)且與其對(duì)稱軸成的直線與橢圓交于兩點(diǎn),
則||=(    ).
A. B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知長(zhǎng)方形,,,以的中點(diǎn)
原點(diǎn)建立如圖所示的平面直角坐標(biāo)系.
(1)求以A、B為焦點(diǎn),且過C、D兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓上任意一點(diǎn)為P,在x軸上有一個(gè)動(dòng)點(diǎn)Q(t,0),其中,探究的最
小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線,為坐標(biāo)原點(diǎn).
(Ⅰ)過點(diǎn)作兩相互垂直的弦,設(shè)的橫坐標(biāo)為,用表示△的面積,并求△面積的最小值;
(Ⅱ)過拋物線上一點(diǎn)引圓的兩條切線,分別交拋物線于點(diǎn), 連接,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C:和直線
(1)當(dāng)時(shí),求圓上的點(diǎn)到直線距離的最小值;
(2)當(dāng)直線與圓C有公共點(diǎn)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線),焦點(diǎn)為,直線 交拋物線、兩點(diǎn),是線段的中點(diǎn),過軸的垂線交拋物線于點(diǎn)
(1)若拋物線上有一點(diǎn)到焦點(diǎn)的距離為,求此時(shí)的值;
(2)是否存在實(shí)數(shù),使是以為直角頂點(diǎn)的直角三角形?若存在,求出
的值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓上一點(diǎn)P到左焦點(diǎn)的距離為5,則其到右焦點(diǎn)的距離為(  )
A.5B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線y2=2px的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則p的值為      .

查看答案和解析>>

同步練習(xí)冊(cè)答案