【題目】小王為了鍛煉身體,每天堅持“健步走”,并用計步器進行統(tǒng)計.小王最近8天“健步走”步數(shù)的頻數(shù)分布直方圖(圖1)及相應的消耗能量數(shù)據(jù)表(表1)如下:

健步走步數(shù)(前步)

16

17

18

19

消耗能量(卡路里)

400

440

480

520

(Ⅰ)求小王這8天“健步走”步數(shù)的平均數(shù);
(Ⅱ)從步數(shù)為17千步,18千步,19千步的幾天中任選2天,求小王這2天通過“健步走”消耗的能量和不小于1000卡路里的概率.

【答案】解:(I) 小王這8天 每天“健步走”步數(shù)的平均數(shù)為 (千步)(II)設小王這2天通過“健步走”消耗的能量和不小于1000卡路里為事件A.
“健步走”17千步的天數(shù)為2天,記為a1 , a2 , “健步走”18千步的天數(shù)為1天,記為b1 , “健步走”19千步的天數(shù)為2天,記為c1 , c2
5天中任選2天包含基本事件有:a1a2 , a1b1 , a1c1 , a1c2 , a2b1 , a2c1 , a2c2 , b1c1 , b1c2 , c1c2 , 共10個.
事件A包含基本事件有:b1c1 , b1c2 , c1c2共3個.
所以
【解析】(I)由已知條件利用平均數(shù)公式能求出小王這8天每天“健步走”步數(shù)的平均數(shù).(II)設小王這2天通過“健步走”消耗的能量和不小于1000卡路里為事件A.“健步走”17千步的天數(shù)為2天,記為a1 , a2 , “健步走”18千步的天數(shù)為1天,記為b1 , “健步走”19千步的天數(shù)為2天,記為c1 , c2 . 利用列舉法能求出小王這2天通過“健步走”消耗的能量和不小于1000卡路里的概率.
【考點精析】掌握頻率分布直方圖是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線 的左、右焦點分別為F1、F2 , P為C的右支上一點,且|PF2|=|F1F2|,則 等于(
A.24
B.48
C.50
D.56

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在我國古代著名的數(shù)學專著《九章算術(shù)》里有﹣段敘述:今有良馬與駑馬發(fā)長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增十三里:駑馬初日行九十七里,日減半里,良馬先至齊,復還迎駑馬,二馬相逢, 問:需日相逢.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設α∈(0, ),滿足 sinα+cosα=
(1)求cos(α+ )的值;
(2)求cos(2α+ π)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=sin(2x+ )+ cos(2x+ ),則(
A.y=f(x)在(0, )單調(diào)遞增,其圖象關(guān)于直線x= 對稱
B.y=f(x)在(0, )單調(diào)遞增,其圖象關(guān)于直線x= 對稱
C.y=f(x)在(0, )單調(diào)遞減,其圖象關(guān)于直線x= 對稱
D.y=f(x)在(0, )單調(diào)遞減,其圖象關(guān)于直線x= 對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C 的離心率為 ,點 在橢圓C上.直線l過點(1,1),且與橢圓C交于A,B兩點,線段AB的中點為M. (I)求橢圓C的方程;
(Ⅱ)點O為坐標原點,延長線段OM與橢圓C交于點P,四邊形OAPB能否為平行四邊形?若能,求出此時直線l的方程,若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC是一個面積較大的三角形,點P是△ABC所在平面內(nèi)一點且 + +2 = ,現(xiàn)將3000粒黃豆隨機拋在△ABC內(nèi),則落在△PBC內(nèi)的黃豆數(shù)大約是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,D、E分別是△ABC的三等分點,設 = = ,∠BAC=
(1)用 分別表示 ,
(2)若 =15,| |=3 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知方程(m2﹣2m﹣3)x+(2m2+m﹣1)y+5﹣2m=0(m∈R).
(1)求方程表示一條直線的條件;
(2)當m為何值時,方程表示的直線與x軸垂直;
(3)若方程表示的直線在兩坐標軸上的截距相等,求實數(shù)m的值.

查看答案和解析>>

同步練習冊答案