【題目】
已知函數(shù),其中是常數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)若存在實(shí)數(shù),使得關(guān)于的方程在上有兩個(gè)不相等的實(shí)數(shù)根,求的取值范圍.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)當(dāng)a=1時(shí),f(1)=e,f′(1)=4e,由點(diǎn)斜式可求得y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ) 令f′(x)=ex[x2+(a+2)x)]=0,可解得x=﹣(a+2)或x=0,對(duì)﹣(a+2)與0的大小關(guān)系分類討論,可求得關(guān)于x的方程f(x)=k在[0,+∞)上有兩個(gè)不相等的實(shí)數(shù)根的k的取值范圍.
解:(Ⅰ)由可得
.
當(dāng)時(shí),,.
所以 曲線在點(diǎn)處的切線方程為,
即
(Ⅱ) 令,
解得或
當(dāng),即時(shí),在區(qū)間上,,所以是上的增函數(shù).
所以 方程在上不可能有兩個(gè)不相等的實(shí)數(shù)根.
當(dāng),即時(shí),隨的變化情況如下表
↘ | ↗ |
由上表可知函數(shù)在上的最小值為.
因?yàn)?/span> 函數(shù)是上的減函數(shù),是上的增函數(shù),
且當(dāng)時(shí),有.
所以 要使方程在上有兩個(gè)不相等的實(shí)數(shù)根,的取值范圍必須是
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)在上有最大值1,設(shè) .
(1)求的值;
(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍;
(3)若函數(shù)有三個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍(為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知拋物線的頂點(diǎn)為,與軸的交點(diǎn)為,則直線稱為拋物線的伴隨直線.
(1)求拋物線的伴隨直線的表達(dá)式;
(2)已知拋物線的伴隨直線為,且該拋物線與軸有兩個(gè)不同的公共點(diǎn),求的取值范圍.
(3)已知,若拋物線的伴隨直線為,且該拋物線與線段恰有1個(gè)公共點(diǎn),求的取值范圍(直接寫出答案即可)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為雙曲線的左、右焦點(diǎn),過作垂直于軸的直線,并在軸上方交雙曲線于點(diǎn),且.
(1)求雙曲線的方程;
(2)過雙曲線上一點(diǎn)作兩條漸近線的垂線,垂足分別是和,試求的值;
(3)過圓上任意一點(diǎn)作切線交雙曲線于兩個(gè)不同點(diǎn),中點(diǎn)為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高一年級(jí)6個(gè)班級(jí)去蘇州、黃山、廈門三個(gè)地方修學(xué)旅行,每個(gè)城市至少有一個(gè)班前去,其中1班和2班不能去同一個(gè)地方,則共有_________種不同分配方法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計(jì)劃,收集了近個(gè)月廣告投入量(單位:萬元)和收益(單位:萬元)的數(shù)據(jù)如下表:
月份 | ||||||
廣告投入量 | ||||||
收益 |
他們分別用兩種模型①,②分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計(jì)量的值:
(Ⅰ)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個(gè)模型?并說明理由;
(Ⅱ)殘差絕對(duì)值大于的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除:
(。┨蕹惓(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程
(ⅱ)若廣告投入量時(shí),該模型收益的預(yù)報(bào)值是多少?
附:對(duì)于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)不完全統(tǒng)計(jì),某廠的生產(chǎn)原料耗費(fèi)(單位:百萬元)與銷售額(單位:百萬元)如下:
2 | 4 | 6 | 8 | |
30 | 40 | 50 | 70 |
變量、為線性相關(guān)關(guān)系.
(1)求線性回歸方程必過的點(diǎn);
(2)求線性回歸方程;
(3)若實(shí)際銷售額要求不少于百萬元,則原材料耗費(fèi)至少要多少百萬元。
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E、F分別是PC、AD中點(diǎn),
(1)求證:DE//平面PFB;
(2)求PB與面PCD所成角的正切值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com