(本小題滿分12分)
(1)焦點在x軸上的橢圓的一個頂點為A(2,0),其長軸長是短軸長的2倍,求橢圓的標準方程.
(2)已知雙曲線的一條漸近線方程是,并經(jīng)過點
,求此雙曲線的標準方程.
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)已知中心在坐標原點O,焦點在軸上,長軸長是短軸長的2倍的橢圓經(jīng)過點M(2,1)
(Ⅰ)求橢圓的方程;
(Ⅱ)直線平行于
,且與橢圓交于A、B兩個不同點.
(ⅰ)若為鈍角,求直線
在
軸上的截距m的取值范圍;
(ⅱ)求證直線MA、MB與x軸圍成的三角形總是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,斜率為1的直線過拋物線的焦點F,與拋物線交于兩點A,B,
(1)若|AB|=8,求拋物線的方程;
(2)設C為拋物線弧AB上的動點(不包括A,B兩點),求的面積S的最大值;
(3)設P是拋物線上異于A,B的任意一點,直線PA,PB分別交拋物線的準線于M,N兩點,證明M,N兩點的縱坐標之積為定值(僅與p有關)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如果兩個橢圓的離心率相等,那么就稱這兩個橢圓相似.已知橢圓與橢圓
相似,且橢圓
的一個短軸端點是拋物線
的焦點.
(Ⅰ)試求橢圓的標準方程;
(Ⅱ)設橢圓的中心在原點,對稱軸在坐標軸上,直線
與橢圓
交于
兩點,且與橢圓
交于
兩點.若線段
與線段
的中點重合,試判斷橢圓
與橢圓
是否為相似橢圓?并證明你的判斷.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分13分)
設點P是圓x2 +y2 =4上任意一點,由點P向x軸作垂線PP0,垂足為Po,且.
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)設直線:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點A,B.
(1)若直線OA,AB,OB的斜率成等比數(shù)列,求實數(shù)m的取值范圍;
(2)若以AB為直徑的圓過曲線C與x軸正半軸的交點Q,求證:直線過定點(Q點除外),并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知橢圓,其左準線為
,右準線為
,拋物線
以坐標原點
為頂點,
為準線,
交
于
兩點.
(1)求拋物線的標準方程;
(2)求線段的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線過點
.
(I)求拋物線的方程;
(II)已知圓心在軸上的圓
過點
,且圓
在點
的切線恰是拋物線在點
的切線,求圓
的方程;
(Ⅲ)如圖,點為
軸上一點,點
是點
關于原點的對稱點,過點
作一條直線與拋物線交于
兩點,若
,證明:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com