【題目】如圖,四棱錐中,是等邊三角形,底面是直角梯形,,,,分別是,的中點.

1)①求證:平面

②求線段的長度;

2)若,求直線與平面所成角的正弦值.

【答案】1)①詳見解析;②;(2.

【解析】

1通過證明面,再利用面面平行的性質(zhì)得證;由余弦定理求解即可;

2)法一:作出圖象,設(shè)到平面的距離設(shè)為,利用等體積法求出,進而可得直線與平面所成角的正弦值為

法二:利用面面垂直的判定定理可證出平面平面,建立空間直角坐標(biāo)系,通過空間向量法,求出直線與平面所成角的正弦值.

解:(1)①證明:取中點,

,

,

∴平面平面,

平面.

②由①可知:

,

由余弦定理得到:

.

2)解法一:∵,

,

,,

平面,

∴平面平面,

延長,使得,

,

,,

的中點,.

到平面的距離設(shè)為

體積法求得:

,

.

解法二:∵,,

,

,,

平面,

∴平面平面,

為坐標(biāo)原點建立空間坐標(biāo)系,得到

,,

延長,使得

,,

,

,由于,

則法向量,

∴直線與平面所成角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在極坐標(biāo)系中,O為極點,點在曲線上,直線l過點且與垂直,垂足為P.

1)當(dāng)時,求l的極坐標(biāo)方程;

2)當(dāng)MC上運動且P在線段OM上時,求P點軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知0x20y2,且M+M的最小值為(  )

A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是菱形,且,其對角線、交于點, 、是棱、上的中點.

(1)求證:面;

(2)若面底面 , ,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點F到左頂點的距離為3.

1)求橢圓C的方程;

2)設(shè)O是坐標(biāo)原點,過點F的直線與橢圓C交于AB兩點(A,B不在x軸上),若,延長AO交橢圓與點G,求四邊形AGBE的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線交于P,Q兩點,且的面積為16O為坐標(biāo)原點).

1)求C的方程.

2)直線l經(jīng)過C的焦點Fl不與x軸垂直;lC交于AB兩點,若線段AB的垂直平分線與x軸交于點D,試問在x軸上是否存在點E,使為定值?若存在,求該定值及E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自湖北武漢爆發(fā)新型冠狀病毒肺炎疫情以來,各地醫(yī)療物資缺乏,各生產(chǎn)企業(yè)紛紛加班加點生產(chǎn),某企業(yè)準(zhǔn)備購買三臺口罩生產(chǎn)設(shè)備,型號分別為A,B,C,已知這三臺設(shè)備均使用同一種易耗品,提供設(shè)備的商家規(guī)定:可以在購買設(shè)備的同時購買該易耗品,每件易耗品的價格為100元;也可以在設(shè)備使用過程中,隨時單獨購買易耗品,每件易耗品的價格為200元.為了決策在購買設(shè)備時應(yīng)同時購買的易耗品的件數(shù),該單位調(diào)查了這三種型號的設(shè)備各60臺,調(diào)查每臺設(shè)備在一個月中使用的易耗品的件數(shù),并得到統(tǒng)計表如下所示.

每臺設(shè)備一個月中使用的易耗品的件數(shù)

6

7

8

頻數(shù)

型號A

30

30

0

型號B

20

30

10

型號C

0

45

15

將調(diào)查的每種型號的設(shè)備的頻率視為概率,各臺設(shè)備在易耗品的使用上相互獨立.

1)求該單位一個月中A,B,C三臺設(shè)備使用的易耗品總數(shù)超過21件(不包括21件)的概率;

2)以該單位一個月購買易耗品所需總費用的期望值為決策依據(jù),該單位在購買設(shè)備時應(yīng)同時購買20件還是21件易耗品?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市對全市高二學(xué)生的期末數(shù)學(xué)測試成績統(tǒng)計顯示,全市10000名學(xué)生的數(shù)學(xué)成績服從正態(tài)分布.現(xiàn)從甲校高二年級數(shù)學(xué)成績在100分以上(含100分)的共200份試卷中用系統(tǒng)抽樣的方法抽取了20份試卷進行分析(試卷編號為001,002,…,200),成績統(tǒng)計如下:

試卷編號

試卷得分

109

118

112

114

126

128

127

124

126

120

試卷編號

試卷得分

135

138

135

137

135

139

142

144

148

150

注:表中試卷編.

1)寫出表中試卷得分為144分的試卷編號(寫出具體數(shù)據(jù)即可);

2)該市又用系統(tǒng)抽樣的方法從乙校中抽取了20份試卷,將甲乙兩校這40份試卷的得分制作成如圖所示的莖葉圖,在這40份試卷中,從成績在140分以上(含140分)的學(xué)生中任意抽取3人,這3人中數(shù)學(xué)成績在全市排名前15名的人數(shù)記為,求隨機變量的分布列和期望.

附:若,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某動漫影視制作公司長期堅持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)文化中的動漫題材,創(chuàng)作出一批又一批的優(yōu)秀動漫影視作品,獲得市場和廣大觀眾的一致好評,同時也為公司贏得豐厚的利潤.該公司2013年至2019年的年利潤關(guān)于年份代號的統(tǒng)計數(shù)據(jù)如下表(已知該公司的年利潤與年份代號線性相關(guān)):

年份

2013

2014

2015

2016

2017

2018

2019

年份代號

1

2

3

4

5

6

7

年利潤 (單位:億元)

(Ⅰ)求關(guān)于的線性回歸方程,并預(yù)測該公司2020(年份代號記為)的年利潤;

(Ⅱ)當(dāng)統(tǒng)計表中某年年利潤的實際值大于由中線性回歸方程計算出該年利潤的估計值時,稱該年為級利潤年,否則稱為級利潤年.中預(yù)測的該公司2020年的年利潤視作該年利潤的實際值,現(xiàn)從2015年至2020年這年中隨機抽取年,求恰有年為級利潤年的概率.

參考公式:

查看答案和解析>>

同步練習(xí)冊答案