【題目】某小區(qū)內(nèi)有一塊以為圓心半徑為20米的圓形區(qū)域.廣場,為豐富市民的業(yè)余文化生活,現(xiàn)提出如下設(shè)計方案:如圖,在圓形區(qū)域內(nèi)搭建露天舞臺,舞臺為扇形區(qū)域,其中兩個端點,分別在圓周上;觀眾席為梯形內(nèi)且在圓外的區(qū)域,其中,,且,在點的同側(cè).為保證視聽效果,要求觀眾席內(nèi)每一個觀眾到舞臺處的距離都不超過60米.設(shè).
(1)求的長(用表示);
(2)對于任意,上述設(shè)計方案是否均能符合要求?
【答案】(1) (2)能符合要求
【解析】
(1)利用垂徑定理,可以得到一個直角三角形,可以求出的長;
(2)根據(jù)垂線段最短這個性質(zhì),可以得到點處的觀眾離點最遠(yuǎn),利用余弦定理求出的長,求出它的最大值,與60進行比較,得出結(jié)論。
解:(1)過點作垂直于,垂足為
在直角三角形中,,
所以,因此
(2)由圖可知,點處的觀眾離點最遠(yuǎn)
在三角形中,由余弦定理可知
.
因為,所以當(dāng),即時,
=800+1600,
又=800+1600
所以
所以觀眾席內(nèi)每一個觀眾到舞臺處的距離都不超過米.
故對于任意,上述設(shè)計方案均能符合要求.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(Ⅰ)求曲線的直角坐標(biāo)方程,并指出其表示何種曲線;(Ⅱ)設(shè)直線與曲線交于兩點,若點的直角坐標(biāo)為,試求當(dāng)時,的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐的外接球的表面積為25π,該三棱錐的三視圖如圖所示,三個視圖的外輪廓都是直角三角形,則其側(cè)視圖面積的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在獨立性檢驗中,統(tǒng)計量有三個臨界值:2.706,3.841和6.635.當(dāng)時,有90%的把握說明兩個事件有關(guān);當(dāng)時,有95%的把握說明兩個事件有關(guān),當(dāng)時,有99%的把握說明兩個事件有關(guān),當(dāng)時,認(rèn)為兩個事件無關(guān).在一項打鼾與心臟病的調(diào)查中,共調(diào)查了2000人,經(jīng)計算.根據(jù)這一數(shù)據(jù)分析,認(rèn)為打鼾與患心臟病之間( )
A. 有95%的把握認(rèn)為兩者有關(guān) B. 約95%的打鼾者患心臟病
C. 有99%的把握認(rèn)為兩者有關(guān) D. 約99%的打鼾者患心臟病
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C: (a>0,b>0)的左、右焦點分別為F1 , F2 , 點M與雙曲線C的焦點不重合,點M關(guān)于F1 , F2的對稱點分別為A,B,線段MN的中點在雙曲線的右支上,若|AN|﹣|BN|=12,則a=( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)高等數(shù)學(xué)老師這學(xué)期分別用兩種不同的教學(xué)方式試驗甲、乙兩個大一新班(人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同;勤奮程度和自覺性都一樣),F(xiàn)隨機抽取甲、乙兩班各20名的高等數(shù)學(xué)期末考試成績,得到莖葉圖:
(Ⅰ)依莖葉圖判斷哪個班的平均分高?
(Ⅱ)現(xiàn)從甲班高等數(shù)學(xué)成績不得低于80分的同學(xué)中隨機抽取兩名同學(xué),求成績?yōu)?/span>86分的同學(xué)至少有一個被抽中的概率;
(Ⅲ)學(xué)校規(guī)定:成績不低于85分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷“能否在犯錯誤的概率不超過0.025的前提下認(rèn)為成績優(yōu)秀與教學(xué)方式有關(guān)?”
甲班 | 乙班 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
下面臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下結(jié)論,其中正確結(jié)論的個數(shù)為( )
①函數(shù)的零點為,則函數(shù)的圖象經(jīng)過點時,函數(shù)值一定變號.
②相鄰兩個零點之間的所有函數(shù)值保持同號.
③函數(shù)在區(qū)間上連續(xù),若滿足,則方程在區(qū)間上一定有實根.
④“二分法”對連續(xù)不斷的函數(shù)的所有零點都有效.
A. 0個B. 1個C. 2個D. 3個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年10月19日,由中國工信部、江西省政府聯(lián)合主辦的世界VR(虛擬現(xiàn)實)產(chǎn)業(yè)大會在南昌開幕,南昌在紅谷灘新區(qū)建立VR特色小鎮(zhèn)項目.現(xiàn)某廠商抓住商機在去年用450萬元購進一批VR設(shè)備,經(jīng)調(diào)試后今年投入使用,計劃第一年維修、保養(yǎng)費用22萬元,從第二年開始,每年所需維修、保養(yǎng)費用比上一年增加4萬元,該設(shè)備使用后,每年的總收入為180萬元,設(shè)使用x年后設(shè)備的盈利額為y萬元.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)使用若干年后,當(dāng)年平均盈利額達到最大值時,求該廠商的盈利額.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com