過點(1,2),且在兩坐標(biāo)軸上截距相等的直線方程________

y=2x或x+y-3=0
試題分析:(1)截距相等為零時,直線過原點,直線方程為y=2x.
(2)截距相等不為零時,設(shè)直線方程為x+y=a,因為它過點(1,2),所以a=3,所以直線方程為x+y-3=0.
所以所求直線方程為y=2x或x+y-3=0
考點:求直線方程,直線方程的截距式.
點評:截距相等的直線方程包括兩類直線:一是過原點,截距都為零;二是截距相等都為零,此時直線的斜率為-1.還要注意截距相等與截距的絕對值相等的區(qū)別
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過點(1,2),且在兩坐標(biāo)軸上的截距相等的直線有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x3+x2+bx+c,(x<1)
alnx,(x≥1)
的圖象過點(-1,2),且在點(-1,f(-1))處的切線與直線x-5y+1=0垂直.
(1)求實數(shù)b,c的值;
(2)求f(x)在[-1,e](e為自然對數(shù)的底數(shù))上的最大值;
(3)對任意給定的正實數(shù)a,曲線y=f(x)上是否存在兩點P,Q,使得△POQ是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x3+x2+bx+c(x<1)
alnx(x≥1)
的圖象過點(-1,2),且在點(-1,f(-1))處的切線與直線x-5y+1=0垂直.
(Ⅰ)求實數(shù)b,c的值;
(Ⅱ)求f(x)在[-1,e](e為自然對數(shù)的底數(shù))上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x3+x2+bx+c(x<1)
alnx  (x≥1)
的圖象過點(-1,2),且在x=
2
3
處取得極值.
(Ⅰ)求實數(shù)b,c的值;
(Ⅱ)求f(x)在[-1,e](e為自然對數(shù)的底數(shù))上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x3+x2+bx+c(x<1)
alnx(x≥1)
,的圖象過點(-1,2),且在點(-1,f(-1))處的切線與直線x-5y+1=0垂直.
(1)求實數(shù)b,c的值;
(2)若P,Q是曲線y=f(x)上的兩點,且△POQ是以O(shè)為直角頂點的直角三角形,此三角形斜邊的中點在y軸上,則對任意給定的正實數(shù)a,滿足上述要求的三角形有幾個?

查看答案和解析>>

同步練習(xí)冊答案