【題目】如圖,以為頂點的六面體中, 和均為等邊三角形,且平面平面, 平面, , .
(1)求證: 平面;
(2)求此六面體的體積.
【答案】(1)證明見解析;(2) 2.
【解析】試題分析:(Ⅰ)作 ,交于,連結(jié) ,根據(jù)條件證明四邊形是平行四邊形;(Ⅱ)將此六面體分成兩個三棱錐的體積和 ,根據(jù)(Ⅰ)的結(jié)果可知點到平面的距離是,點到平面的距離是,這樣求體積和.
試題解析:(Ⅰ)作,交于,連結(jié).
因為平面平面,
所以平面,
又因為平面,
從而.
因為是邊長為2的等邊三角形,
所以,
因此,
于是四邊形為平行四邊形,
所以,
因此平面.
(Ⅱ) 因為是等邊三角形,
所以是中點,
而是等邊三角形,
因此,
由平面,知,
從而平面,
又因為,
所以平面,
因此四面體的體積為,
四面體的體積為,
而六面體的體積=四面體的體積+四面體的體積
故所求六面體的體積為2
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知菱形ABCD的邊長為2,∠BAD=120°,點E,F(xiàn)分別在邊BC,DC上, =λ , =μ ,若 =1, =﹣ ,則λ+μ=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1: 的離心率為 ,焦距為 ,拋物線C2:x2=2py(p>0)的焦點F是橢圓C1的頂點. (Ⅰ)求C1與C2的標(biāo)準(zhǔn)方程;
(Ⅱ)C1上不同于F的兩點P,Q滿足 ,且直線PQ與C2相切,求△FPQ的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, , .
(1)討論函數(shù)的單調(diào)性;
(2)記,設(shè), 為函數(shù)圖象上的兩點,且.
(i)當(dāng)時,若在, 處的切線相互垂直,求證: ;
(ii)若在點, 處的切線重合,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作,約成書于四、五世紀(jì),也就是大約一千五百年前,傳本的《孫子算經(jīng)》共三卷,卷中有一問題:“今有方物一束,外周一匝有三十二枚,問積幾何?”該著作中提出了一種解決問題的方法:“重置二位,左位減八,余加右位,至盡虛加一,即得.”通過對該題的研究發(fā)現(xiàn),若一束方物外周一匝的枚數(shù)是8的整數(shù)倍時,均可采用此方法求解,如圖,是解決這類問題的程序框圖,若輸入,則輸出的結(jié)果為( )
A. 120 B. 121 C. 112 D. 113
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個袋子中裝有三個編號分別為1,2,3的紅球和三個編號分別為1,2,3的白球,三個紅球按其編號分別記為a1 , a2 , a3 , 三個白球按其編號分別記為b1 , b2 , b3 , 袋中的6個球除顏色和編號外沒有任何差異,現(xiàn)從袋中一次隨機地取出兩個球,
(1)列舉所有的基本事件,并寫出其個數(shù);
(2)規(guī)定取出的紅球按其編號記分,取出的白球按其編號的2倍記分,取出的兩個球的記分之和為一次取球的得分,求一次取球的得分不小于6的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P﹣ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中點.
(1)證明:面PAD⊥面PCD;
(2)求直線AC與PB所成角的余弦值;
(3)求二面角A﹣MC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2 ﹣ ,則使得f(2x)>f(x﹣3)成立的x的取值范圍是( )
A.(﹣∞,﹣3)
B.(1,+∞)
C.(﹣3,﹣1)
D.(﹣∞,﹣3)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣t)|x|(t∈R).
(1)討論y=f(x)的奇偶性;
(2)當(dāng)t>0時,求f(x)在區(qū)間[﹣1,2]的最小值h(t).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com