某幾何體的三視圖如圖所示,其中俯視圖為扇形,則該幾何體的體積為( 。
A、
3
B、
π
3
C、
9
D、
16π
9
考點:由三視圖求面積、體積
專題:計算題,空間位置關(guān)系與距離
分析:根據(jù)三視圖判斷幾何體是圓錐的一部分,再根據(jù)俯視圖與左視圖的數(shù)據(jù)可求得底面扇形的圓心角為120°,又由側(cè)視圖知幾何體的高為4,底面圓的半徑為2,把數(shù)據(jù)代入圓錐的體積公式計算.
解答: 解:由三視圖知幾何體是圓錐的一部分,由俯視圖與左視圖可得:底面扇形的圓心角為120°,
又由側(cè)視圖知幾何體的高為4,底面圓的半徑為2,
∴幾何體的體積V=
120
360
×
1
3
×π×22×4=
16
9
π

故選:D.
點評:本題考查了由三視圖求幾何體的體積,解答的關(guān)鍵是判斷幾何體的形狀及三視圖的數(shù)據(jù)所對應(yīng)的幾何量.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知|x-1|-|x+2|>m恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等腰三角形ABC中,AB=AC=5,∠B=30°,P為BC邊中線上任意一點,則
CP
BC
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程x4+(a+1)x2+2a-4=0有兩個不相等的實根,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|2≤x≤6},B={x|a≤x≤a+3},若B⊆A,則實數(shù)a的取值范圍是(  )
A、{a|2≤a≤3}
B、{a|a≥3}
C、{a|a≥2}
D、{a|1<a<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈(0,
π
4
)那么( 。
A、sinα>cosα
B、sinα<cosα
C、sinα≥cosαD
D、sina≤cosa

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個命題中:
①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進行某項指標(biāo)檢測,這樣的抽樣是分層抽樣;
②兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近于1;
③在某項測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內(nèi)取值的概率為0.4,則ξ在(0,2)內(nèi)取值的概率為0.8;
④對分類變量X與Y的隨機變量K2的觀測值k來說,k越小,判斷“X與Y有關(guān)系”的把握程度越大.
其中真命題的個數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),求數(shù)列{an}通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)每個人在任何一個月出生是等可能的,計算在一個有10人的集體中,至少有2個人生日在同一個月的概率.

查看答案和解析>>

同步練習(xí)冊答案