分析 (1)a1=3,an+1=2an+2(n∈N*).取n=1,2即可得出.
(2)由an+1=2an+2(n∈N*).得an+1+2=2(an+2)利用等比數(shù)列的定義及其通項公式即可得出.
(3)由(1)可得:bn=$\frac{n}{5×{2}^{n-1}}$,利用“錯位相減法”與等比數(shù)列的求和公式、數(shù)列的單調(diào)性即可得出.
解答 解:(1)a1=3,an+1=2an+2(n∈N*).
則a2=2×3+2=8,a3=2×8+2=18.
(2)證明:由an+1=2an+2(n∈N*).得an+1+2=2(an+2),∵a1=3,a1+2=5,
∴{an+2}是首項為5,公比為2的等比數(shù)列,
an+2=5×2n-1,∴an=5×2n-1-2.
(3)證明:由(1)可得:bn=$\frac{n}{5×{2}^{n-1}}$,
Sn=$\frac{1}{5}$$(1+\frac{2}{2}+\frac{3}{{2}^{2}}+…+\frac{n}{{2}^{n-1}})$①
$\frac{1}{2}{S}_{n}$=$\frac{1}{5}$$(\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}+…+\frac{n}{{2}^{n}})$②
①-②可得:Sn=$\frac{2}{5}$$(1+\frac{1}{2}+\frac{1}{{2}^{2}}+…+\frac{1}{{2}^{n-1}}-\frac{n}{{2}^{n}})$=$\frac{2}{5}(\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}-\frac{n}{{2}^{n}})$=$\frac{2}{5}$$(2-\frac{2+n}{{2}^{n}})$.
∴Sn$<\frac{4}{5}$.
又∵Sn+1-Sn=$\frac{2}{5}×\frac{n+1}{{2}^{n+1}}$>0,
∴數(shù)列{Sn}單調(diào)遞增,Sn≥S1=$\frac{1}{5}$,
∴對?n∈N*,都有$\frac{1}{5}$≤Sn<$\frac{4}{5}$.
點評 本題考查了“錯位相減法”、等比數(shù)列的通項公式與求和公式、數(shù)列的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<c<b | B. | b<c<a | C. | b<a<c | D. | a<b<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x2+1 | B. | y=log2|x| | ||
C. | y=$\left\{\begin{array}{l}{{e}^{x}(x≥0)}\\{{e}^{-x}(x<0)}\end{array}\right.$ | D. | y=|x+2| |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com