精英家教網 > 高中數學 > 題目詳情
已知曲線C上任意一點M到點F(1,0)的距離比它到直線l:x=-2的距離小1.
(1)求曲線C的方程;
(2)斜率為1的直線l過點F,且與曲線C交與A、B兩點,求線段AB的長.
分析:(1)由已知:點M到F(1,0)的距離與它到直線l':x=-1的距離相等,所以點M的軌跡C是以F為焦點,l'為準線的拋物線,由此能求出曲線C的方程.
(2)設交點A,B的坐標分別為A(x1,y1),B(x2,y2),則由拋物線的定義可得|AF|=dA=x1+1|BF|=dB=x2+1,于是|AB|=|AF|+|BF|=x1+x2+2,由此能求出線段AB的長.
解答:解:(1)由已知條件知,
點M到F(1,0)的距離與它到直線l':x=-1的距離相等,
∴點M的軌跡C是以F為焦點,
l'為準線的拋物線,
∴曲線C的方程為y2=4x.…(4分)
(2)設交點A,B的坐標分別為A(x1,y1),B(x2,y2),
則由拋物線的定義可得|AF|=dA=x1+1|BF|=dB=x2+1…(6分)
于是|AB|=|AF|+|BF|=x1+x2+2
由條件知直線l方程為:y=x-1代入y2=4x,
得 (x-1)2=4x
即 x2-6x+1=0∴x1+x2=6,
故|AB|=x1+x2+2=8.…(10分)
點評:本題主要考查直線與圓錐曲線的綜合應用能力,綜合性強,是高考的重點,易錯點是知識體系不牢固.本題具體涉及到軌跡方程的求法及直線與雙曲線的相關知識,解題時要注意合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知曲線C上任意一點M到點F(0,1)的距離比它到直線l:y=-2的距離小1.
(1)求曲線C的方程;
(2)過點P(2,2)的直線與曲線C交于A、B兩點,設
AP
PB
.當△AOB的面積為4
2
時(O為坐標原點),求λ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系xOy中,已知曲線C上任意一點到點M(0,
1
2
)的距離與到直線y=-
1
2
的距離相等.
(Ⅰ)求曲線C的方程;
(Ⅱ)設A1(x1,0),A2(x2,0)是x軸上的兩點(x1+x2≠0,x1x2≠0),過點A1,A2分別作x軸的垂線,與曲線C分別交于點A1′,A2′,直線A1′A2′與x軸交于點A3(x3,0),這樣就稱x1,x2確定了x3.同樣,可由x2,x3確定了x4.現已知x1=6,x2=2,求x4的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•松江區(qū)三模)在平面直角坐標系中,O為坐標原點.已知曲線C上任意一點P(x,y)(其中x≥0)到定點F(1,0)的距離比它到y(tǒng)軸的距離大1,直線l與曲線C相交于不同的A,B兩點.
(1)求曲線C的軌跡方程;
(2)若直線l經過點F(1,0),求
OA
OB
的值;
(3)若
OA
OB
=-4
,證明直線l必過一定點,并求出該定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,O為坐標原點.已知曲線C上任意一點P(x,y)(其中x≥0)到定點F(1,0)的距離比它到y(tǒng)軸的距離大1.
(1)求曲線C的軌跡方程;
(2)若過點F(1,0)的直線l與曲線C相交于不同的A,B兩點,求
OA
OB
的值;
(3)若曲線C上不同的兩點M、N滿足
OM
MN
=0
,求|
ON
|
的取值范圍.

查看答案和解析>>

同步練習冊答案