精英家教網 > 高中數學 > 題目詳情
由函數y=f(x)確定數列{an},an=f(n),若函數y=f(x)的反函數y=f-1(x)能確定數列{bn},bn=f-1(n),則稱數列{bn}是數列{an}的“反數列”.
(1)若函數f(x)=2
x
確定數列{an}的反數列為{bn},求{bn}的通項公式;
(2)對(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對任意的正整數n恒成立,求實數a的取值范圍;
(3)設cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)(λ為正整數)
,若數列{cn}的反數列為{dn},{cn}與{dn}的公共項組成的數列為{tn},求數列{tn}前n項和Sn
分析:(1)f(x)=2
x
(x≥0)?an=2
n
,f-1(x)=
x2
4
(x≥0)
,由此能求出數列{an}的反數列為{bn}的通項公式.(2)把不等式化為
2
n+1
+
2
n+2
+…+
2
2n
1
2
loga(1-2a)
,Tn=
2
n+1
+
2
n+2
+…+
2
2n
,Tn+1-Tn=
2
2n+1
+
2
2(n+1)
-
2
n+1
=
2
2n+1
-
2
2n+2
>0
,數列{Tn}單調遞增,所以(Tnmin=T1=1,要使不等式恒成立,只要1>
1
2
loga(1-2a)
,由此能求出使不等式對于任意正整數n恒成立的a的取值范圍.
(3)設公共項tk=cp=dn,k、p、q為正整數,當λ為奇數時,tn=2n-1,{tn}的前n項和Sn=n2.當λ為偶數時,tn=3n,{tn}的前n項和Sn=
3
2
(3n-1)
解答:解:(1)f(x)=2
x
(x≥0)?an=2
n
(n為正整數),f-1(x)=
x2
4
(x≥0)

所以數列{an}的反數列為{bn}的通項bn=
n2
4
(n為正整數)(2分)
(2)對于(1)中{bn},不等式化為
2
n+1
+
2
n+2
+…+
2
2n
1
2
loga(1-2a)
..(3分)
Tn=
2
n+1
+
2
n+2
+…+
2
2n
,Tn+1-Tn=
2
2n+1
+
2
2(n+1)
-
2
n+1
=
2
2n+1
-
2
2n+2
>0
,
∴數列{Tn}單調遞增,(5分)
所以(Tnmin=T1=1,要是不等式恒成立,只要1>
1
2
loga(1-2a)
.(6分)
∵1-2a>0,∴0<a<
1
2
,又1-2a>a2,0<a<
2
-1

所以,使不等式對于任意正整數n恒成立的a的取值范圍是(0,
2
-1)
..(8分)
(3)設公共項tk=cp=dn,k、p、q為正整數,
當λ為奇數時,cn=2n-1,dn=
1
2
(n+1)
(9分)
2p-1=
1
2
(p+1),q=4p-3
,則{cn}?{bn}(表示{cn}是{bn}的子數列),tn=2n-1
所以{tn}的前n項和Sn=n2..(11分)
當λ為偶數時,cn=3n,dn=log3n(12分)
3q=log3q,則q=33p,同樣有{cn}?{bn},tn=3n
所以{tn}的前n項和Sn=
3
2
(3n-1)
(14分)
點評:本題考查數列通項公式的求法、實數的取值范圍和前n項和的求法,解題時要注意導數的合理運用和分類討論思想的靈活運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

由函數y=f(x)確定數列{an},an=f(n),函數y=f(x)的反函數y=f-1(x)能確定數列bn,bn=f-1(n)若對于任意n∈N*都有bn=an,則稱數列{bn}是數列{an}的“自反函數列”
(1)設函數f(x)=
px+1
x+1
,若由函數f(x)確定的數列{an}的自反數列為{bn},求an
(2)已知正整數列{cn}的前項和sn=
1
2
(cn+
n
cn
).寫出Sn表達式,并證明你的結論;
(3)在(1)和(2)的條件下,d1=2,當n≥2時,設dn=
-1
anSn2
,Dn是數列{dn}的前n項和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

由函數y=f(x)確定數列{an},an=f(n),函數y=f(x)的反函數y=f-1(x)能確定數列{bn},bn=f-1(n),若對于任意n?N*,都有bn=an,則稱數列{bn}是數列{an}的“自反數列”.
(1)若函數f(x)=
px+1
x+1
確定數列{an}的自反數列為{bn},求an
(2)在(1)條件下,記
n
1
x1
+
1
x2
+…
1
xn
為正數數列{xn}的調和平均數,若dn=
2
an+1
-1
,Sn為數列{dn}的前n項之和,Hn為數列{Sn}的調和平均數,求
lim
n→∞
=
Hn
n
;
(3)已知正數數列{cn}的前n項之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•浦東新區(qū)一模)由函數y=f(x)確定數列{an},an=f(n),若函數y=f(x)的反函數y=f-1(x)能確定數列{bn},bn=f-1(n),則稱數列{bn}是數列{an}的“反數列”.
(1)若函數f(x)=2
x
確定數列{an}的反數列為{bn},求bn
(2)設cn=3n,數列{cn}與其反數列{dn}的公共項組成的數列為{tn}
(公共項tk=cp=dq,k、p、q為正整數).求數列{tn}前10項和S10;
(3)對(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對任意的正整數n恒成立,求實數a的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數y=f(x)存在反函數y=f-1(x),由函數y=f(x)確定數列{an},an=f(n),由函數y=f-1(x)確定數列{bn},bn=f-1(n),則稱數列{bn}是數列{an}的“反數列”.
(1)若數列{bn}是函數f(x)=
x+1
2
確定數列{an}的反數列,試求數列{bn}的前n項和Sn;
(2)若函數f(x)=2
x
確定數列{cn}的反數列為{dn},求{dn}的通項公式;
(3)對(2)題中的{dn},不等式
1
dn+1
+
1
dn+2
+…+
1
d2n
1
2
log(1-2a)對任意的正整數n恒成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案