已知橢圓的兩個焦點為F1,F(xiàn)2,橢圓上一點M
滿足.
(1)求橢圓的方程;
(2)若直線L:y=與橢圓恒有不同交點A,B,且(O為坐標原點),求實數(shù)k的范圍.

(1). (2)

解析試題分析:(1)設F1(-c,0),F(xiàn)2(c,0),
利用即可得到c的方程,所以, 
再根據(jù)點M在橢圓上得到另一方程,即可確定得到橢圓方程.
(2)由.
,利用,得到,再結(jié)合,由
得解.
試題解析:(1)設F1(-c,0),F(xiàn)2(c,0)


.        2分
 ①   又點M在橢圓上 ②
由①代入②得,整理為:,
,, .     4分
∴橢圓方程為.          5分
(2)由.     7分


.    10分

.         13分
考點:橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系,不等式的解法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知點,圓是以為圓心,半徑為的圓,點是圓上任意一點,線段的垂直平分線和半徑所在的直線交于點.
(Ⅰ)當點在圓上運動時,求點的軌跡方程;
(Ⅱ)已知是曲線上的兩點,若曲線上存在點,滿足為坐標原點),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓,橢圓的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設O為坐標原點,點A,B分別在橢圓上, ,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心在原點,焦點在軸上,長軸長為,且點在橢圓上.
(1)求橢圓的方程;
(2)設是橢圓長軸上的一個動點,過作方向向量的直線交橢圓兩點,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的左、右焦點分別為,橢圓的離心率為,且橢圓經(jīng)過點
(1)求橢圓C的標準方程;
(2)線段是橢圓過點的弦,且,求內(nèi)切圓面積最大時實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知中心在原點的橢圓的離心率,一條準線方程為
(1)求橢圓的標準方程;
(2)若以>0)為斜率的直線與橢圓相交于兩個不同的點,且線段的垂直平分線與兩坐標軸圍成的三角形的面積為,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知動圓過定點P(1,0),且與定直線l:x=-1相切,點C在l上.
(1)求動圓圓心的軌跡M的方程;
(2)設過點P,且斜率為-的直線與曲線M相交于A、B兩點. 問:△ABC能否為正三角形?若能,求點C的坐標;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓E:=1()過點M(2,), N(,1),為坐標原點
(I)求橢圓E的方程;
(II)是否存在以原點為圓心的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標系中,已知中心在原點,離心率為的橢圓E的一個焦點為圓的圓心.
⑴求橢圓E的方程;
⑵設P是橢圓E上一點,過P作兩條斜率之積為的直線,當直線都與圓相切時,求P點坐標.

查看答案和解析>>

同步練習冊答案