【題目】在平面直角坐標(biāo)系中,已知圓經(jīng)過(guò) 兩點(diǎn),且圓心在直線上.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)過(guò)圓內(nèi)一點(diǎn)作兩條相互垂直的弦,當(dāng)時(shí),求四邊形的面積.

(3)設(shè)直線與圓相交于兩點(diǎn), ,且的面積為,求直線的方程.

【答案】(1);(2)9;(3).

【解析】試題分析:(1)由圓的方程可采用待定系數(shù)法或利用圓的性質(zhì):弦的垂直平分線過(guò)圓心等來(lái)求解;(2)將四邊形面積用弦長(zhǎng)表示,利用直線與圓相交時(shí)弦長(zhǎng)一半,圓的半徑,圓心到直線的距離構(gòu)成的直角三角形求解;(3)設(shè)出直線方程,將弦長(zhǎng)和面積用表示,解方程可得到直線的方程

試題解析:(1)因?yàn)?/span>,所以AB的中點(diǎn)為,

故線段AB的垂直平分線的方程為,即

,解得圓心坐標(biāo)為

所以半徑r滿足

故圓的標(biāo)準(zhǔn)方程為

2到直線的距離相等,設(shè)為

四邊形的面積

3)設(shè)坐標(biāo)原點(diǎn)到直線的距離為,因?yàn)?/span>

當(dāng)直線x軸垂直時(shí),由坐標(biāo)原點(diǎn)到直線的距離為知,直線的方程為

,經(jīng)驗(yàn)證,此時(shí),不適合題意;

當(dāng)直線x軸不垂直時(shí),設(shè)直線的方程為

由坐標(biāo)原點(diǎn)到直線的距離為,得*),

又圓心到直線的距離為,所以

**),

由(*),(**)解得

綜上所述,直線的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是甲、乙兩人在一次射擊比賽中中靶的情況(擊中靶中心的圓面為10環(huán),靶中各數(shù)字表示該數(shù)字所在圓環(huán)被擊中所得的環(huán)數(shù)),每人射擊了6次.

甲射擊的靶   乙射擊的靶

(1)請(qǐng)用列表法將甲、乙兩人的射擊成績(jī)統(tǒng)計(jì)出來(lái);

(2)請(qǐng)你用學(xué)過(guò)的統(tǒng)計(jì)知識(shí),對(duì)甲、乙兩人這次的射擊情況進(jìn)行比較.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=xex , 則(
A.x=1為f(x)的極大值點(diǎn)
B.x=1為f(x)的極小值點(diǎn)
C.x=﹣1為f(x)的極大值點(diǎn)
D.x=﹣1為f(x)的極小值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某公共汽車線路收支差額(票價(jià)總收人減去運(yùn)營(yíng)成本)與乘客量的函數(shù)圖象.目前這條線路虧損,為了扭虧,有關(guān)部門(mén)舉行提高票價(jià)的聽(tīng)證會(huì).乘客代表認(rèn)為:公交公司應(yīng)節(jié)約能源,改善管理,降低運(yùn)營(yíng)成本,以此舉實(shí)現(xiàn)扭虧.公交公司認(rèn)為:運(yùn)營(yíng)成本難以下降,公司己盡力,提高票價(jià)才能扭虧.根據(jù)這兩種意見(jiàn),可以把圖分別改畫(huà)成圖②和圖③,

(1)說(shuō)明圖①中點(diǎn)和點(diǎn)以及射線的實(shí)際意義;

(2)你認(rèn)為圖②和圖③兩個(gè)圖象中,反映乘客意見(jiàn)的是_________,反映公交公司意見(jiàn)的是_________.

(3)如果公交公司采用適當(dāng)提高票價(jià)又減少成本的辦法實(shí)現(xiàn)扭虧為贏,請(qǐng)你在圖④中畫(huà)出符合這種辦法的大致函數(shù)關(guān)系圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù) 的單調(diào)遞減區(qū)間是(
A.(﹣∞,﹣2)
B.(﹣∞,1)
C.(﹣2,4)
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐SABCD的底面為正方形,SD⊥底面ABCD,則下列結(jié)論

ACSB

AB∥平面SCD

SA與平面ABD所成的角等于SC與平面ABD所成的角

ABSC所成的角等于DCSA所成的角.

⑤二面角的大小為

其中,正確結(jié)論的序號(hào)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)對(duì)高三學(xué)生進(jìn)行體能測(cè)試,已知高三某文科班有學(xué)生30人,立定跳遠(yuǎn)的測(cè)試成績(jī)用莖葉圖表示如圖(單位: );男生成績(jī)?cè)?/span>以上(包括)定義為“合格”,成績(jī)?cè)?/span>以下(不包括)定義為“不合格”;女生成績(jī)?cè)?/span>以上(包括)定義為“合格”,成績(jī)?cè)?/span>以下(不包括)定義為“不合格.

(1)求女生立定跳遠(yuǎn)測(cè)試成績(jī)的中位數(shù);

(2)若在男生中按成績(jī)是否合格進(jìn)行分層抽樣,抽取6人,求抽取成績(jī)?yōu)椤昂细瘛钡膶W(xué)生人數(shù);

(3)若從(2)中抽取的6名男生中任意選取4人,求這4人中至少有3人“合格”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax+ ,其中函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程為y=x﹣1.
(1)若a= ,求函數(shù)f(x)的解析式;
(2)若f(x)≥g(x)在[1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍;
(3)證明:1+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】x,y 滿足約束條件 ,若 z=y﹣ax 取得最大值的最優(yōu)解不唯一,則實(shí)數(shù) a 的值為(
A. 或﹣1
B.2 或
C.2 或1
D.2 或﹣1

查看答案和解析>>

同步練習(xí)冊(cè)答案