【題目】如圖,扇形AOB所在圓的半徑是1,弧AB的中點為C,動點M,N分別在OA,OB上運(yùn)動,且滿足OM=BN,∠AOB=120°.
(Ⅰ)設(shè) ,若 ,用a,b表示
(Ⅱ)求 的取值范圍.

【答案】解:(Ⅰ)由題意可得△OAC是等邊三角形,∴| |=| |,∴四邊形OACB是平行四邊形,∴ ,
,
(Ⅱ)設(shè) ,則 ,t∈[0,1].
,
= ,
由t∈[0,1],得 的取值范圍是
【解析】(Ⅰ)由題意可得△OAC是等邊三角形,| |=| |,四邊形OACB是平行四邊形,從而用a,b表示 .(Ⅱ)利用兩個向量的加減法的法則,以及其幾何意義,化簡 的解析式,再利用二次函數(shù)的性質(zhì),求得它的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,四邊形ABEF為直角梯形,且AF∥BE,AB⊥BE,平面ABCD∩平面ABEF=AB,AB=BE=2AF=2. (Ⅰ)求證:AC∥平面DEF;
(Ⅱ)若二面角D﹣AB﹣E為直二面角,
( i)求直線AC與平面CDE所成角的大;
( ii)棱DE上是否存在點P,使得BP⊥平面DEF?若存在,求出 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=lg(1﹣x2),集合A={x|y=f(x)},B={y|y=f(x)},則如圖中陰影部分表示的集合為(

A.[﹣1,0]
B.(﹣1,0)
C.(﹣∞,﹣1)∪[0,1)
D.(﹣∞,﹣1]∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (x∈R).
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間;
(Ⅱ)若 ,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)的定義域是(0,+∞),f'(x)為f(x)的導(dǎo)函數(shù),且滿足f(x)<f'(x),則不等式 f(2)的解集是(
A.(﹣∞,2)∪(1,+∞)
B.(﹣2,1)
C.(﹣∞,﹣1)∪(2,+∞)
D.(﹣1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣lnx,a∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=e2 , 當(dāng)x∈(0,e]時,求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x+exa , g(x)=ln(x+2)﹣4eax , 其中e為自然對數(shù)的底數(shù),若存在實數(shù)x0 , 使f(x0)﹣g(x0)=3成立,則實數(shù)a的值為(
A.﹣ln2﹣1
B.﹣1+ln2
C.﹣ln2
D.ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1在平面直角坐標(biāo)系中的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,有曲線C2:ρ=2cosθ﹣4sinθ
(1)將C1的方程化為普通方程,并求出C2的平面直角坐標(biāo)方程
(2)求曲線C1和C2兩交點之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有兩個命題,p:關(guān)于x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函數(shù)y=lg(ax2﹣x+a)的定義域為R.如果p∨q為真命題,p∧q為假命題,則實數(shù)a的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案