【題目】已知直線C1: ( t 為參數(shù)),曲線C2: (r>0,θ為參數(shù)).
(1)當(dāng)r=1時(shí),求C 1 與C2的交點(diǎn)坐標(biāo);
(2)點(diǎn)P 為曲線 C2上一動(dòng)點(diǎn),當(dāng)r= 時(shí),求點(diǎn)P 到直線C1距離最大時(shí)點(diǎn)P 的坐標(biāo).
【答案】
(1)解:直線C1: ( t 為參數(shù))的普通方程為y=x﹣1,當(dāng)r=1時(shí),曲線C2: (r>0,θ為參數(shù))的普通方程為x2+y2=1.
聯(lián)立方程,可得C 1 與C2的交點(diǎn)坐標(biāo)為(1,0),(0,﹣1);
(2)解:設(shè)P( ),則點(diǎn)P 到直線C1距離d= =
當(dāng)cos(θ+ )=﹣1,即θ= +2kπ(k∈Z)時(shí),dmax= ,此時(shí)P(﹣1,1).
【解析】(1)參數(shù)方程化為普通方程,即可求C 1 與C2的交點(diǎn)坐標(biāo);(2)利用圓的參數(shù)方程,結(jié)合點(diǎn)到直線的距離公式、三角函數(shù)公式,即可求點(diǎn)P 到直線C1距離最大時(shí)點(diǎn)P 的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρsin2θ=2acosθ(a>0),直線l的參數(shù)方程為 (t為參數(shù)),直線l與曲線C相交于A,B兩點(diǎn).
(1)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若|AB|=2 ,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+2|﹣2|x﹣1|. (Ⅰ)求不等式f(x)≥﹣2的解集M;
(Ⅱ)對(duì)任意x∈[a,+∞),都有f(x)≤x﹣a成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}為等比數(shù)列,a1=1,a4=27; Sn為等差數(shù)列{bn} 的前n 項(xiàng)和,b1=3,S5=35.
(1)求{an}和{bn} 的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn} 滿足cn=anbn(n∈N*),求數(shù)列{cn} 的前n 項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(2,1)與Q關(guān)于原點(diǎn)O對(duì)稱,直線PM,QM相交于點(diǎn)M,且它們的斜率之積是﹣ (Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)過P作直線l交軌跡C于另一點(diǎn)A,求DPAO的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的莖葉圖(圖一)為高三某班50名學(xué)生的化學(xué)考試成績(jī),圖(二)的算法框圖中輸入的ai為莖葉圖中的學(xué)生成績(jī),則輸出的m,n分別是( )
A.m=38,n=12
B.m=26,n=12
C.m=12,n=12
D.m=24,n=10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)袋中裝有大小相同的球10個(gè),其中紅球8個(gè),黑球2個(gè),現(xiàn)從袋中有放回地取球,每次隨機(jī)取1個(gè). 求: (Ⅰ)連續(xù)取兩次都是紅球的概率;
(Ⅱ)如果取出黑球,則取球終止,否則繼續(xù)取球,直到取出黑球,但取球次數(shù)最多不超過4次,求取球次數(shù)ξ的概率分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知D(x0 , y0)為圓O:x2+y2=12上一點(diǎn),E(x0 , 0),動(dòng)點(diǎn)P滿足 = + ,設(shè)動(dòng)點(diǎn)P的軌跡為曲線C.
(1)求曲線C的方程;
(2)若動(dòng)直線l:y=kx+m與曲線C相切,過點(diǎn)A1(﹣2,0),A2(2,0)分別作A1M⊥l于M,A2N⊥l于N,垂足分別是M,N,問四邊形A1MNA2的面積是否存在最值?若存在,請(qǐng)求出最值及此時(shí)k的值;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com