已知平面a外兩點(diǎn)A、B到平面a的距離分別為1和2,A、B兩點(diǎn)在平面a內(nèi)的射影之間的距離為
3
,求直線AB和平面a所成的角.
考點(diǎn):直線與平面所成的角
專題:計(jì)算題,空間角
分析:根據(jù)線面所成角的定義,利用直角三角形的三角函數(shù)的定義加以計(jì)算,可得AB所在的直線和平面α所成的角.
解答: 解:設(shè)AB所在的直線和平面α所成的角是θ,
∵平面a外兩點(diǎn)A、B到平面a的距離分別為1和2,A、B兩點(diǎn)在平面a內(nèi)的射影之間的距離為
3

∴可得tanθ=
1
3

結(jié)合θ∈[0,π],可得θ=
π
6

即AB所在的直線和平面α所成的角為
π
6
點(diǎn)評(píng):本題著重考查了直線與平面所成角的定義和直角三角形中三角函數(shù)的定義等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2013年將在沈陽(yáng)舉行第十二屆全運(yùn)會(huì),乒乓球比賽會(huì)產(chǎn)生男子個(gè)人、女子個(gè)人、男子團(tuán)體、女子團(tuán)體共四枚金牌,保守估計(jì),福建乒乓球男隊(duì)獲得每枚金牌的概率為
3
4
,福建乒乓球女隊(duì)獲得每枚金牌的概率均為
4
5

(1)記福建男隊(duì)獲得金牌總數(shù)為X,按此估計(jì),求X的分布列和數(shù)學(xué)期望;
(2)按此估計(jì),求福建乒乓球女隊(duì)比男隊(duì)多獲得一枚金牌的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,2AC=AA1=BC=2,D為棱AA1上的點(diǎn).
(1)若D為AA1的中點(diǎn),求證:平面B1CD⊥平面B1C1D;
(2)若直線B1D與平面ACC1A1所成角為45°,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線:x-y+m=0與雙曲線x2-
y2
2
=1交于不同的兩點(diǎn)A、B,若線段AB的中點(diǎn)在圓x2+y2=5上,則m的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)點(diǎn)M與頂點(diǎn)F1(-5,0),F(xiàn)2(5,0)連線斜率之積為常數(shù)p(-1≤p≤0).求動(dòng)點(diǎn)M的軌跡方程,指出其軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知向量
m
=(sinA-sinB,sinC),
n
=(
2
sinA-sinC,sinA+sinB),且
m
n
,則角B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求點(diǎn)A(a,0)到橢圓
x2
2
+y2=1上的點(diǎn)之間的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把不等式2≤x≤4表示成含有絕對(duì)值的不等式|x-a|≤b,那么a=
 
,b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

作函數(shù)y=
|x|+1
|x+1|
的大致圖象.

查看答案和解析>>

同步練習(xí)冊(cè)答案