已知,

;,問是否存在實(shí)數(shù)a,b,使得(1)A∩B;(2)同時(shí)成立?

答案:略
解析:

假設(shè)存在a,b,使得(1)成立,得到ab的關(guān)系后與聯(lián)立,然后對(duì)討論聯(lián)立的不等式組.

假設(shè)存在實(shí)數(shù)a,b使得AB,則集合

分別對(duì)應(yīng)集合對(duì)應(yīng)的直線y=axb與拋物線至少要有公共點(diǎn),所以方程組有解,

即方程3必有解.

因此,

又∵

①,②相加得

,∴b=6,

b=6代入(1),再將b=6代入(2),因此,再將,b=6代入方程,解得,這與相矛盾,所以不存在實(shí)數(shù),使(1)(2)同時(shí)成立.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年度山東省萊陽一中第一學(xué)期高三數(shù)學(xué)學(xué)段檢測(cè)(文) 題型:044

假設(shè)A型進(jìn)口車關(guān)稅稅率在2002年是100%,在2007年是25%,2002年A型進(jìn)口車每輛價(jià)格為64萬元(其中含32萬元關(guān)稅稅款).

(1)已知與A型車性能相近的B型國產(chǎn)車,2002年每輛價(jià)格為46萬元,若A型車的價(jià)格只受關(guān)稅降低的影響,為了保證2007年B型車的價(jià)格不高于丑型車價(jià)格的90%,B型車價(jià)格要逐年降低,問平均每年至少下降多少萬元?

(2)某人在2002年將33萬元存人銀行,假設(shè)銀行扣利息稅后的年利率為1.80%0(5年內(nèi)不變),且每年按復(fù)利計(jì)算(上一年的利息計(jì)人第二年的本金),那么5年到期時(shí)這筆錢連本帶息是否一定夠買按(1)中所述降價(jià)后的B型車一輛?(參考數(shù)據(jù)1.0185≈1.093)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年萊陽一中學(xué)段檢測(cè)文)(12分)

      假設(shè)且型進(jìn)口車關(guān)稅稅率在2002年是100%,在2007年是25%,2002年A型進(jìn)口車

每輛價(jià)格為64萬元(其中含32萬元關(guān)稅稅款)。

(1)已知與義型車性能相近的B型國產(chǎn)車,2002年每輛價(jià)格為46萬元,若A型車的價(jià)格只受關(guān)稅降低的影響,為了保證2007年B型車的價(jià)格不高于丑型車價(jià)格的90%,B

型車價(jià)格要逐年降低,問平均每年至少下降多少萬元?

    (2)某人在2002年將33萬元存人銀行,假設(shè)銀行扣利息稅后的年利率為1.80%0(5年內(nèi)

不變),且每年按復(fù)利計(jì)算(上一年的利息計(jì)人第二年的本金),那么5年到期時(shí)這筆錢連本帶息是否一定夠買按(1)中所述降價(jià)后的B型車一輛?(參考數(shù)據(jù)1.0185  ≈1..093)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知為常數(shù),),設(shè)是首項(xiàng)為4,公差為2的等差數(shù)列.

(Ⅰ)若,記數(shù)列的前n項(xiàng)和為,當(dāng)時(shí),求;

(Ⅱ)若,問是否存在實(shí)數(shù),使得中每一項(xiàng)恒小于它后面的項(xiàng)?若存

在,求出實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬沖刺考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存過點(diǎn)(2,1)的直線與橢圓相交于不同的兩點(diǎn),滿足?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

【解析】第一問利用設(shè)橢圓的方程為,由題意得

解得

第二問若存在直線滿足條件的方程為,代入橢圓的方程得

因?yàn)橹本與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為,

所以

所以.解得。

解:⑴設(shè)橢圓的方程為,由題意得

解得,故橢圓的方程為.……………………4分

⑵若存在直線滿足條件的方程為,代入橢圓的方程得

因?yàn)橹本與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為,

所以

所以

,

因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012070912284792138316/SYS201207091229220620471975_ST.files/image009.png">,即

所以

所以,解得

因?yàn)锳,B為不同的兩點(diǎn),所以k=1/2.

于是存在直線L1滿足條件,其方程為y=1/2x

 

查看答案和解析>>

同步練習(xí)冊(cè)答案