【題目】設橢圓的兩個焦點分別為 ,過作橢圓長軸的垂線交橢圓于點,若為等腰直角三角形,則橢圓的離心率是( )

A. B. C. D.

【答案】C

【解析】試題分析:解:設點Px軸上方,坐標為(),為等腰直角三角形,|PF2|=|F1F2|, ,故選D.

考點:橢圓的簡單性質

點評:本題主要考查了橢圓的簡單性質.橢圓的離心率是高考中選擇填空題?嫉念}目.應熟練掌握圓錐曲線中a,b,ce的關系

型】單選題
束】
8

【題目】”是“對任意的正數(shù), ”的( )

A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件

【答案】A

【解析】分析:根據基本不等式,我們可以判斷出”?“對任意的正數(shù)x2x+≥1”對任意的正數(shù)x,2x+≥1”?“a=

真假,進而根據充要條件的定義,即可得到結論.

解答:解:當“a=時,由基本不等式可得:

對任意的正數(shù)x,2x+≥1”一定成立,

“a=”?“對任意的正數(shù)x2x+≥1”為真命題;

對任意的正數(shù)x2x+≥1時,可得“a≥

對任意的正數(shù)x2x+≥1”?“a=為假命題;

“a=對任意的正數(shù)x2x+≥1充分不必要條件

故選A

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (為實常數(shù))

I)當時,求函數(shù)上的最大值及相應的值;

II)當時,討論方程根的個數(shù).

III)若,且對任意的,都有,求

實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四面體中,平面,,的中點,的中點,點在線段上,且

(1)證明:平面;

(2)若二面角的大小為60°,求BDC的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個棱錐的三視圖如圖,則該棱錐的全面積為(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】生于瑞士的數(shù)學巨星歐拉在1765年發(fā)表的《三角形的幾何學》一書中有這樣一個定理:“三角形的外心、垂心和重心都在同一直線上!边@就是著名的歐拉線定理,在中,分別是外心、垂心和重心,邊的中點,下列四個結論:(1);(2);(3);(4)正確的個數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,函數(shù)的最小值為.

(1)當時,求的值;

(2)求

(3)已知函數(shù)為定義在上的增函數(shù),且對任意的都滿足,問:是否存在這樣的實數(shù),使不等式對所有恒成立,若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列和等比數(shù)列滿足, ,

1的通項公式;

2求和:

【答案】1;(2

【解析】試題分析:(1)根據等差數(shù)列, ,列出關于首項、公差的方程組,解方程組可得的值,從而可得數(shù)列的通項公式;(2)利用已知條件根據題意列出關于首項 ,公比 的方程組,解得、的值求出數(shù)列的通項公式,然后利用等比數(shù)列求和公式求解即可.

試題解析:(1)設等差數(shù)列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.

所以an=2n1.

(2)設等比數(shù)列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.

解得q2=3.所以.

從而.

型】解答
束】
18

【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.

(1)若,且為真,求實數(shù)的取值范圍;

(2)若的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)處有極值,求的值;

(2)若對于任意的上單調遞增,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列和等比數(shù)列滿足 ,

1的通項公式;

2求和:

【答案】1;(2

【解析】試題分析:(1)根據等差數(shù)列, ,列出關于首項、公差的方程組,解方程組可得的值,從而可得數(shù)列的通項公式;(2)利用已知條件根據題意列出關于首項公比 的方程組,解得、的值,求出數(shù)列的通項公式,然后利用等比數(shù)列求和公式求解即可.

試題解析:(1)設等差數(shù)列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.

所以an=2n1.

(2)設等比數(shù)列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.

解得q2=3.所以.

從而.

型】解答
束】
18

【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.

(1)若,且為真,求實數(shù)的取值范圍;

(2)若的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案