下列幾個(gè)命題:①直線y=x與函數(shù)y=sinx的圖象有3個(gè)不同的交點(diǎn);②函數(shù)y=tanx在定義域內(nèi)是單調(diào)遞增函數(shù);③函數(shù)y=2x-x2y=(
12
)x-x2
的圖象關(guān)于y軸對稱;④若函數(shù)y=lg(x2+2x+m)的值域?yàn)镽,則實(shí)數(shù)m的取值范圍為(-∞,1];⑤若定義在R上的奇函數(shù)f(x)對任意x都有f(x)=f(2-x),則函數(shù)f(x)為周期函數(shù).其中正確的命題為
 
(請將你認(rèn)為正確的所有命題的序號都填上).
分析:①令f(x)=x-sinx,f′(x)=1-cosx≥0,因此函數(shù)f(x)在R上單調(diào)遞增,又f(0)=0,可得當(dāng)x≠0時(shí),f(x)≠0,因此直線y=x與函數(shù)y=sinx的圖象只有1個(gè)交點(diǎn).
②函數(shù)y=tanx在區(qū)間(kπ-
π
2
,kπ+
π
2
)(k∈Z)
上單調(diào)遞增,而在定義域內(nèi)不是單調(diào)遞增函數(shù);
③函數(shù)f(x)=2x-x2與f(-x)=
1
2x
-x2
,可得f(x)≠f(-x),圖象關(guān)于y軸不對稱;
④若函數(shù)y=lg(x2+2x+m)的值域?yàn)镽,則實(shí)數(shù)m的取值范圍為(-∞,1];
⑤若定義在R上的奇函數(shù)f(x)對任意x都有f(x)=f(2-x),則函數(shù)f(x)關(guān)于直線x=1對稱,是周期函數(shù).
解答:解:①令f(x)=x-sinx,f′(x)=1-cosx≥0,因此函數(shù)f(x)在R上單調(diào)遞增,又f(0)=0,
∴當(dāng)x≠0時(shí),f(x)≠0,因此直線y=x與函數(shù)y=sinx的圖象只有1個(gè)交點(diǎn),因此不正確.
②函數(shù)y=tanx在區(qū)間(kπ-
π
2
,kπ+
π
2
)(k∈Z)
上單調(diào)遞增,而在定義域內(nèi)不是單調(diào)遞增函數(shù),故不正確;
③函數(shù)f(x)=2x-x2與f(-x)=
1
2x
-x2
的圖象關(guān)于y軸不對稱;
④若函數(shù)y=lg(x2+2x+m)的值域?yàn)镽,則實(shí)數(shù)m的取值范圍為(-∞,1];
⑤若定義在R上的奇函數(shù)f(x)對任意x都有f(x)=f(2-x),則函數(shù)f(x)關(guān)于直線x=1對稱,是周期函數(shù).
其中正確的命題為 ③④⑤.
故答案為:③④⑤.
點(diǎn)評:本題綜合考查了函數(shù)的圖象與性質(zhì),屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個(gè)命題:
①函數(shù)y=xln(x+1)-6的零點(diǎn)個(gè)數(shù)有且只有1個(gè);
②函數(shù)y=log2(-x+1)+2的圖象可由y=log2(-x-1)-2的圖象向下平移4個(gè)單位,再向右平移2個(gè)單位得到;
③若關(guān)于x方程|x2-2x-3|=m有兩解,則m=0或m>4.
④若函數(shù)f(x+1)是偶函數(shù),則f(x)的圖象關(guān)于直線x=1對稱.
其中正確的有
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個(gè)命題,其中正確的命題有
①④
①④
.(填寫所有正確命題的序號)
①函數(shù)y=log2(x-3)+2的圖象可由y=log2x的圖象向上平移2個(gè)單位,向右平移3個(gè)單位得到;
②函數(shù)f(x)=
2x-3
x+1
的圖象關(guān)于點(diǎn)(1,2)成中心對稱;
③在區(qū)間(0,+∞)上函數(shù)y=x
1
2
的圖象始終在函數(shù)y=x的圖象上方;
④任一函數(shù)圖象與垂直于x軸的直線都不可能有兩個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個(gè)命題:
 (1)函數(shù)f(x)=xn+ax-1(n∈Z,a>0,a≠1)的圖象必過點(diǎn)(1,2);
 (2)f(x)=
x2-4
+
4-x2
是偶函數(shù),但不是奇函數(shù);
 (3)函數(shù)y=f(x)值域是[-3,3],則函數(shù)y=f(x-2)值域是[-1,5];
 (4)設(shè)函數(shù)y=f(x)定義域?yàn)镽,則函數(shù)y=f(1-x)與y=f(x-1)圖象關(guān)于y軸對稱;
 (5)y=|3-x2|圖象與直線y=a有k個(gè)公共點(diǎn),則k的值不可能是1;
 上述五個(gè)命題中所有正確的命題序號是
①④⑤
①④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個(gè)命題:
①方程x2+(a-3)x+a=0有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,則a<0;
②函數(shù)y=
x2-1
+
1-x2
是偶函數(shù),但不是奇函數(shù);
③函數(shù)f(x)的值域是[-2,2],則函數(shù)f(x+1)的值域?yàn)閇-3,1];
④一條曲線y=|3-x2|和直線y=a(a∈R)的公共點(diǎn)個(gè)數(shù)是m,則m的值不可能是1.
其中正確的有
①④
①④

查看答案和解析>>

同步練習(xí)冊答案