20.已知f(x)為R上的可導函數(shù),且?x∈R,均有f(x)>f′(x),則以下判斷正確的是(  )
A.f(2016)>e2016f(0)B.f(2016)<e2016f(0)
C.f(2016)=e2016f(0)D.f(2016)與e2016f(0)大小無法確定

分析 設(shè)函數(shù)h(x)=$\frac{f(x)}{{e}^{x}}$,求得h′(x)<0,可得h(x)在R上單調(diào)遞減,可得h(2016)<h(0),再進一步化簡,可得結(jié)論.

解答 解:設(shè)函數(shù)h(x)=$\frac{f(x)}{{e}^{x}}$,
∵?x∈R,均有f(x)>f′(x),則h′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$<0,
∴h(x)在R上單調(diào)遞減,∴h(2016)<h(0),即 $\frac{f(2016)}{{e}^{2016}}$<$\frac{f(0)}{{e}^{0}}$<,
即 f(2016)<e2016f(0),
故選:B.

點評 本題主要考查利用導數(shù)研究函數(shù)的單調(diào)性,利用函數(shù)的單調(diào)性比較兩個函數(shù)值的大小,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=sin(ωx+$\frac{π}{8}$)(x∈R,ω>0)的最小正周期為π,為了得到函數(shù)g(x)=cosωx的圖象,只要將y=f(x)的圖象( 。
A.向左平移$\frac{3π}{4}$個單位長度B.向右平移$\frac{3π}{4}$個單位長度
C.向左平移$\frac{3π}{16}$個單位長度D.向右平移$\frac{3π}{16}$個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=ex,g(x)=$\frac{n}{2}x+m$,其中e為自然對數(shù)的底數(shù),m,n∈R.
(1)若n=2時方程f(x)=g(x)在[-1,1]上恰有兩個相異實根,求m的取值范圍;
(2)若T(x)=f(x)•g(x),且m=1-$\frac{n}{2}$,求T(x)在[-1,1]上的最大值;
(3)若m=-$\frac{15}{2}$,求使f(x)>g(x)對?x∈R都成立的最大正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若函數(shù)f(x)=sinx+3|sinx|+b(x∈[0,2π])恰有三個不同的零點,則b=-2或0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.直線ax+by=1與圓C:x2+y2=1相切,則點P(a,b)與圓C的位置關(guān)系在圓上(填“在圓上”、“在圓外”或“在圓內(nèi)”)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=lnx.
(1)若f(x)≤ax在x>0時恒成立,求實數(shù)a的取值范圍;
(2)證明:$\frac{x}{1+x}$≤f(x+1)在x>-1時恒成立;
(3)設(shè)n∈N*,證明:$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n+1}$<ln(n+1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12..已知數(shù)列{an},{bn}滿足:an+bn=1,bn+1=$\frac{b_n}{{(1-{a_n})(1+{a_n})}}$,且a1,b1是函數(shù)f(x)=16x2-16x+3的零點(a1<b1).
(1)求a1,b1,b2;
(2)設(shè)cn=$\frac{1}{{{b_n}-1}}$,求證:數(shù)列{cn}是等差數(shù)列,并求bn的通項公式;
(3)設(shè)Sn=a1a2+a2a3+a3a4+…+anan+1,不等式4aSn<bn恒成立時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若函數(shù)f(x)=2-|x|+c有零點,則實數(shù)c的取值范圍是( 。
A.(0,1]B.[0,1]C.[-1,0)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.(1-$\frac{1}{x}$)(1+x)5的展開式中項x3的系數(shù)為(  )
A.7B.8C.10D.5

查看答案和解析>>

同步練習冊答案