19.已知函數(shù)f(x)=sin(ωx+$\frac{π}{8}$)(x∈R,ω>0)的最小正周期為π,為了得到函數(shù)g(x)=cosωx的圖象,只要將y=f(x)的圖象( 。
A.向左平移$\frac{3π}{4}$個(gè)單位長度B.向右平移$\frac{3π}{4}$個(gè)單位長度
C.向左平移$\frac{3π}{16}$個(gè)單位長度D.向右平移$\frac{3π}{16}$個(gè)單位長度

分析 由周期函數(shù)的周期計(jì)算公式算得ω=2.接下來將f(x)的表達(dá)式轉(zhuǎn)化成與g(x)同名的三角函數(shù),再觀察左右平移的長度即可.

解答 解:由題知ω=$\frac{2π}{π}$=2,
所以f(x)=sin(2x+$\frac{π}{8}$)=cos[$\frac{π}{2}$-(2x+$\frac{π}{8}$)]=cos(2x-$\frac{3π}{8}$)=cos2(x-$\frac{3π}{16}$),
故選:C.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知f($\frac{1-x}{1+x}$)=$\frac{1-{x}^{2}}{1+{x}^{2}}$,則f(x)的解析式可取為( 。
A.$\frac{x}{1+{x}^{2}}$B.-$\frac{2x}{1+{x}^{2}}$C.$\frac{2x}{1+{x}^{2}}$D.-$\frac{x}{1+{x}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=Asin(ωx+φ)-1(A>0,|φ|<$\frac{π}{2}$)的圖象兩相鄰對(duì)稱中心的距離為$\frac{π}{2}$,且f(x)≤$f(\frac{π}{6})$=1(x∈R).
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈$[0,\frac{π}{2}]$時(shí),求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=-x3+ax2-x-1在R上不是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.[-$\sqrt{3}$,$\sqrt{3}$]B.(-$\sqrt{3}$,$\sqrt{3}$)C.(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞)D.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<\frac{π}{2})$的圖象經(jīng)過三點(diǎn)(0,1),$(\frac{5π}{12},0)$,$(\frac{11π}{12},0)$,且在區(qū)間$(\frac{5π}{12},\frac{11π}{12})$內(nèi)有唯一的最值,且為最小值.
(1)求函數(shù)f(x)=Asin(ωx+φ)的解析式;
(2)若函數(shù)f(x)在區(qū)間[-m,m]上是單調(diào)遞增函數(shù),求實(shí)數(shù)m的最大值;
(3)若關(guān)于x的方程f(x)-a+1=0在區(qū)間$(0,\frac{π}{2})$內(nèi)有兩個(gè)實(shí)數(shù)根x1,x2(x1<x2),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)$f(x)=sin(πx+\frac{1}{3})$的最小正周期T=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{ln({x}^{2}-2x+a)}{x-1}$.
(1)當(dāng)a=1時(shí),討論f(x)在(1,+∞)上的單調(diào)性;
(2)若f(x)的定義域?yàn)椋?∞,1)∪(1,+∞).
①求實(shí)數(shù)a的取值范圍;
②若關(guān)于x的不等式f(x)<(x-1)•ex對(duì)任意的x∈(1,+∞)都成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知$\vec m$=(pcosx+q,psinx),$\vec n$=(1,-$\sqrt{3}$),f(x)=$\vec m•\vec n$,△ABC的角A,B,C所對(duì)的邊分別為a,b,c.
(Ⅰ)若p<0時(shí),f(x)在[0,π]上的最大值為2,最小值為-1,求p,q的值;
(Ⅱ)在(Ⅰ)的條件下,若f(A)=1,b=1,S△ABC=$\frac{{\sqrt{3}}}{2}$,求邊a,角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知f(x)為R上的可導(dǎo)函數(shù),且?x∈R,均有f(x)>f′(x),則以下判斷正確的是( 。
A.f(2016)>e2016f(0)B.f(2016)<e2016f(0)
C.f(2016)=e2016f(0)D.f(2016)與e2016f(0)大小無法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案