(本小題滿分12分)

已知函數(shù)f(x)=,其中a>0.

(Ⅰ)若a=1,求曲線y=f(x)在點(2,f(2))處的切線方程;

(Ⅱ)若在區(qū)間上,f(x)>0恒成立,求a的取值范圍.

【解析】本小題主要考查曲線的切線方程、利用導數(shù)研究函數(shù)的單調(diào)性與極值、解不等式等基礎(chǔ)知識,考查運算能力及分類討論的思想方法.滿分12分.

(Ⅰ)解:當a=1時,f(x)=,f(2)=3;f’(x)=, f’(2)=6.所以曲線y=f(x)在點(2,f(2))處的切線方程為y-3=6(x-2),即y=6x-9.

(Ⅱ)解:f’(x)=.令f’(x)=0,解得x=0或x=.

以下分兩種情況討論:

,當x變化時,f’(x),f(x)的變化情況如下表:

X

0

f’(x)

+

0

-

f(x)

極大值

     當等價于

     解不等式組得-5<a<5.因此.

若a>2,則.當x變化時,f’(x),f(x)的變化情況如下表:

X

0

f’(x)

+

0

-

0

+

f(x)

極大值

極小值

時,f(x)>0等價于

解不等式組得.因此2<a<5.

綜合(1)和(2),可知a的取值范圍為0<a<5.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案