已知函數(shù)
(Ⅰ)求函數(shù)f(x)的最小正周期及其單調(diào)遞減區(qū)間;
(Ⅱ)在銳角△ABC中,a,b,c分別為角A,B,C所對的邊,又a=2,,b c=,求△ABC的周長.
【答案】分析:(Ⅰ)利用同角平方關(guān)二倍角公式及輔助角公式對已知函數(shù)進行化簡,然后結(jié)合周期公式即可求解,結(jié)合正弦函數(shù)的單調(diào)區(qū)間可求該函數(shù)的單調(diào)遞減區(qū)間
(Ⅱ)由可求A,然后由余弦定理a2=b2+c2-2bccosA,可求b+c,進而可求周長
解答:解:(Ⅰ)∵
=(2分)
==(4分)
所以函數(shù)f(x)的周期為π.(5分)
,k∈Z
解得  ,
故函數(shù)f(x)的單調(diào)減區(qū)間是.(7分)
(Ⅱ)∵=
,
,
所以.則.(10分)
又 a=2,由余弦定理a2=b2+c2-2bccosA,得4=(b+c)2-2bc-2bccosA,
因為,所以b+c=3,則△ABC的周長等于5.(13分)
點評:本題主要考查同角平方關(guān)系、二倍角公式及輔助角公式在三角函數(shù)化簡中的應(yīng)用,正弦函數(shù)的性質(zhì)及余弦定理等知識的綜合應(yīng)用,試題具有一定的綜合性
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象和y軸交于(0,1)且y軸右側(cè)的第一個最大值、最小值點分別為P(x0,2)和Q(x0+3π,-2).
(1)求函數(shù)y=f(x)的解析式及x0;
(2)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(3)如果將y=f(x)圖象上所有點的橫坐標(biāo)縮短到原來的
1
3
(縱坐標(biāo)不變),然后再將所得圖象沿x軸負方向平移
π
3
個單位,最后將y=f(x)圖象上所有點的縱坐標(biāo)縮短到原來的
1
2
(橫坐標(biāo)不變)得到函數(shù)y=g(x)的圖象,寫出函數(shù)y=g(x)的解析式并給出y=|g(x)|的對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經(jīng)過點Q(8,6).
(1)求a的值,并在直線坐標(biāo)系中畫出函數(shù)f(x)的大致圖象;
(2)求函數(shù)f(t)-9的零點;
(3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(3x+φ) ( A>0,x∈(-∞,+∞),0<φ<π ) 在x=
π
12
時取得最大值4.
(1)求函數(shù)f(x)的最小正周期及解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)求函數(shù)f(x)在[0,
π
3
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2x+
3
sin2x
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)當(dāng) x∈[0,
π
4
]時,求函數(shù)f(x)的值域;
(3)若將該函數(shù)圖象向左平移
π
4
個單位長度,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年湖北省仙桃一中高三(上)第二次段考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)
(1)求函數(shù)f(x)的最小正周期和最小值;
(2)在給出的直角坐標(biāo)系中,用描點法畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

同步練習(xí)冊答案