【題目】寫出下面兩個的相關(guān)命題的逆命題、否命題、逆否命題,并判斷它們的真假:

1)命題:若,則.

逆命題:_______________________________________________________________

逆否命題:_____________________________________________________________

2)命題:設(shè)是實數(shù),如果,那么有實數(shù)根。

否命題:_______________________________________________________________

逆否命題:_____________________________________________________________

【答案】,則 真命題 ,則 假命題 設(shè)是實數(shù),如果,那么沒有實數(shù)根 假命題 設(shè)是實數(shù),如果沒有實數(shù)根,則 真命題

【解析】

根據(jù)原命題直接寫出其它幾種命題,并判斷真賤.

1)命題:若,則.

逆命題:若,則,是真命題;

逆否命題:若,則,是假命題.

2)命題:設(shè)是實數(shù),如果,那么有實數(shù)根。

否命題:設(shè)是實數(shù),如果,那么沒有實數(shù)根,是假命題,

逆否命題:設(shè)是實數(shù),如果沒有實數(shù)根,則,是真命題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是

A. 對分類變量XY,隨機變量K2的觀測值k越大,則判斷“XY有關(guān)系的把握程度越小

B. 在回歸直線方程=0.2x+0.8中,當(dāng)解釋變量x每增加1個單位時,預(yù)報變量平均增加0.2個單位

C. 兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)的絕對值就越接近于1

D. 回歸直線過樣本點的中心(,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(限定).

(1)寫出曲線的極坐標(biāo)方程,并求交點的極坐標(biāo);

(2)射線與曲線分別交于點異于原點),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】人耳的聽力情況可以用電子測聽器檢測,正常人聽力的等級為0-25(分貝),并規(guī)定測試值在區(qū)間為非常優(yōu)秀,測試值在區(qū)間為優(yōu)秀.某班50名同學(xué)都進行了聽力測試,所得測試值制成頻率分布直方圖:

(Ⅰ)現(xiàn)從聽力等級為的同學(xué)中任意抽取出4人,記聽力非常優(yōu)秀的同學(xué)人數(shù)為,求的分布列與數(shù)學(xué)期望;

(Ⅱ)在(Ⅰ)中抽出的4人中任選一人參加一個更高級別的聽力測試,測試規(guī)則如下:四個音叉的發(fā)生情況不同,由強到弱的次序分別為1,2,3,4.測試前將音叉隨機排列,被測試的同學(xué)依次聽完后給四個音叉按發(fā)音的強弱標(biāo)出一組序號, , (其中, , 為1,2,3,4的一個排列).若為兩次排序偏離程度的一種描述, ,求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)站從春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機用戶中隨機抽取2000名進行調(diào)查,將受訪用戶按年齡分成5: 并整理得到如下頻率分布直方圖:

(1)的值;

(2)從春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機用戶中隨機抽取一人,估計其年齡低于40歲的概率;

(3)估計春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機用戶的平均年齡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面ABCD是矩形,⊥平面,,的中點,是線段上的點.

(1)當(dāng)的中點時,求證:∥平面

(2)當(dāng)= 2:1時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在邊長為4的正方形ABCD中,E,F(xiàn)分別是邊AB,BC上的點(端點除外),將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于點A′(如圖②).

(1)求證:ADEF;

(2)當(dāng)點E,F分別為ABBC的中點時,求直線AE與直線BD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為分別為左,右焦點,分別為左,右頂點,D為上頂點,原點到直線的距離為.設(shè)點在第一象限,縱坐標(biāo)為t,且軸,連接交橢圓于點.

(1)求橢圓的方程;

(2)(文)若三角形的面積等于四邊形的面積,求直線的方程;

(理)求過點的圓方程(結(jié)果用t表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三棱柱中,已知側(cè)面.

1)求證 平面;

2是棱長上的一點,若二面角的正弦值為,的長.

查看答案和解析>>

同步練習(xí)冊答案