因為對數(shù)函數(shù)y=logax是減函數(shù)(大前提),而y=log2x是對數(shù)函數(shù)(小前提),所以y=log2x是減函數(shù)(結(jié)論)”.上面推理是( 。
A.大前提錯,導致結(jié)論錯
B.小前提錯,導致結(jié)論錯
C.推理形式錯,導致結(jié)論錯
D.大前提和小前提都錯,導致結(jié)論錯
當a>1時,對數(shù)函數(shù)y=logax是增函數(shù),當0<a<1時,對數(shù)函數(shù)y=logax是減函數(shù),
故推理的大前提是錯誤的
故選A.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

的小數(shù)部分,則當時,的值(   ).

 、必為無理數(shù);、必為偶數(shù);、必為奇數(shù);、可為無理數(shù)或有理數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面內(nèi),1條直線把平面分成2部分,2條直線最多把平面分成4部分,3條直線最多把平面分成7部分,…,則n條直線最多把平面分成f(n)部分,則f(n)=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(n)=log(n+1)(n+2)(n∈N*),若存在正整數(shù)k滿足:f(1)•f(2)•f(3)•…•f(n)=k,那么我們把k叫做關(guān)于n的“對整數(shù)”,則當n∈[1,10]時,“對整數(shù)”共有( 。
A.1個B.2個C.4個D.8個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一支人數(shù)是5的倍數(shù)且不少于1000人的游行隊伍,若按每橫排4人編隊,最后差3人;若按每橫排3人編隊,最后差2人;若按每橫排2人編隊,最后差1人.則這只游行隊伍的最少人數(shù)是( 。
A.1025B.1035C.1045D.1055

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

因為a,b∈R+,a+b≥2
ab
,…大前提
x+
1
x
≥2
x•
1
x
,…小前提
所以x+
1
x
≥2,…結(jié)論
以上推理過程中的錯誤為(  )
A.小前提B.大前提C.結(jié)論D.無錯誤

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

用反證法證明命題“三角形的內(nèi)角中至多有一個鈍角”時,假設正確的是( )
A.三個內(nèi)角中至少有一個鈍角
B.三個內(nèi)角中至少有兩個鈍角
C.三個內(nèi)角都不是鈍角
D.三個內(nèi)角都不是鈍角或至少有兩個鈍角

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

請閱讀下列材料:若兩個正實數(shù)a1,a2滿足a12+a22=1,那么a1+a2.
證明:構(gòu)造函數(shù)f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因為對一切實數(shù)x,恒有f(x)≥0,所以Δ≤0,從而得4(a1+a2)2-8≤0,所以a1+a2.
根據(jù)上述證明方法,若n個正實數(shù)滿足a12+a22+…+an2=1時,你能得到的結(jié)論為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)f(x)在[0,1]上有意義,且f(0)=f(1),如果對任意的x1,x2∈[0,1]
x1x2,都有|f(x1)-f(x2)|<|x1x2|,求證:|f(x1)-f(x2)|<,若用反證法證明該題,則反設應為________.

查看答案和解析>>

同步練習冊答案