已知向量
a
=(1,-2)
,
b
=(x,4)
,且
a
b
,則|
a
-
b
|=(  )
A、5
3
B、3
5
C、2
5
D、2
2
考點:平面向量數(shù)量積的坐標表示、模、夾角
專題:平面向量及應(yīng)用
分析:利用向量向量共線定理可得x,再利用向量模的計算公式即可得出.
解答: 解:∵
a
b
,∴-2x-4=0,解得x=-2.
a
-
b
=(1,-2)-(-2,4)=(3,-6).
∴|
a
-
b
|=
32+(-6)2
=3
5

故選:B.
點評:本題考查平面向量的基本運算,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)F1,F(xiàn)2是雙曲線C:
x2
16
-
y2
b2
=1(b>0)
的兩個焦點,P是雙曲線C上一點,若∠F1PF2=90°且△PF1F2的面積為9,則C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
(1)若
a
b
=
a
c
,則
b
=
c

(2)對空間任意點O與不共線的三點A,B,C,若
OP
=x
OA
+y
OB
+z
OC
(x,y,z∈R),則P,A,B,C四點共面;
(3)“曲線C上的點的坐標都是方程f(x,y)=0的解”是“曲線C的方程是f(x,y)=0”的必要條件;
(4)(
c
b
a
-(
a
c
b
c
垂直.
寫出以上命題為真命題的序號
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)Sn為等差數(shù)列{an}的前n項和,已知S5=5,S9=27,則S7=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=2sin(
π
8
x+
π
4
)(-2<x<14)的圖象與x軸交于點A,過點A的直線l與函數(shù)的圖象交于B、C兩點,則(
OB
+
OC
)•
OA
=(其中O為坐標原點)(  )
A、-32B、32
C、-72D、72

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知銳角A,B滿足2tanA=tan(A+B),則tanB的最大值為( 。
A、2
2
B、
2
C、
2
2
D、
2
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A、
2
3
3
B、
2
3
3
+2π
C、2
3
+2π
D、2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F是雙曲線
x2
3a2
-
y2
a2
=1(a>0)
的右焦點,O為坐標原點,設(shè)P是雙曲線C上一點,則∠POF的大小不可能是( 。
A、15°B、25°
C、60°D、165°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖直角梯形OABC中,∠COA=∠OAB=90°,OC=2,OA=AB=1,SO⊥平面OABC,SO=1,分別以O(shè)C,OA,OS為x軸、y軸、z軸建立直角坐標系O-xyz.
(Ⅰ)求
SC
OB
夾角的余弦值;
(Ⅱ)求OC與平面SBC夾角的正弦值;
(Ⅲ)求二面角S-BC-O.

查看答案和解析>>

同步練習冊答案