精英家教網(wǎng)如圖,在△ABC中,DE∥BC,EF∥CD,若BC=3,DE=2,DF=1,則BD的長為
 
、AB的長為
 
分析:由題中條件:“DE∥BC,EF∥CD”易得△FDE∽△DBC,從而得到對應邊成比例,再結合題中已知線段的長度,即可求得BD的長、AB的長.
解答:解:由DE∥BC,EF∥CD,知△FDE∽△DBC
?
FD
DB
=
DE
BC
?BD=
3
2

AE
AC
=
DE
BC
=
2
3
?
AE
EC
=2=
AF
FD
?AF=2
,
所以AB=
9
2

故答案為:
3
2
;
9
2
點評:此題主要考查的是相似三角形的性質,正確的判斷出相似三角形的對應邊和對應角是解答此題的關鍵.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,已知∠ABC=90°,AB上一點E,以BE為直徑的⊙O恰與AC相切于點D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直徑BE的長;
(2)計算:△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,D是邊AC上的點,且AB=AD,2AB=
3
BD,BC=2BD,則sinC的值為( 。
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,設
AB
=a
,
AC
=b
,AP的中點為Q,BQ的中點為R,CR的中點恰為P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC為鄰邊,AP為對角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比
S平行四邊形ANPM
S△ABC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,∠B=45°,D是BC邊上的一點,AD=5,AC=7,DC=3.
(1)求∠ADC的大。
(2)求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,已知
BD
=2
DC
,則
AD
=( 。

查看答案和解析>>

同步練習冊答案