對任意兩個非零的平面向量,定義=.若平面向量,滿足||≥||>0,的夾角θ∈(0,),且都在集合{|n∈Z}中,則=( )
A.
B.1
C.
D.
【答案】分析:由題意可得 ==,同理可得 ==,故有 n≥m 且 m、n∈z.再由 cos2θ=,的夾角θ∈(0,),可得
cos2θ∈(,1),即∈(,1),由此求得  n=3,m=1,從而得到 == 的值.
解答:解:由題意可得 ====
同理可得 ====
由于||≥||>0,∴n≥m 且 m、n∈z.
∴cos2θ=.再由的夾角θ∈(0,),可得 cos2θ∈(,1),即∈(,1).
故有 n=3,m=1,∴==
故選C.
點評:本題主要考查兩個向量的數(shù)量積的定義,得到 n≥m 且 m、n∈z,且∈(,1),是解題的關(guān)鍵,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

對任意兩個非零的平面向量
α
,
β
,定義
α
β
=
α
β
β
β
.若平面向量
a
,
b
滿足|
a
|≥|
b
|>0,
a
b
的夾角θ∈(0,
π
4
)
,且
a
b
b
a
都在集合{
n
2
|n∈Z}中,則
b
a
=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對任意兩個非零的平面向量
α
β
,定義
α
?
β
=
α
β
β
β
,若平面向量
a
,
b
滿足|
a
|≥|
b
|>0,
a
b
的夾角θ∈(0,
π
3
),且
a
?
b
b
?
a
都在集合{
n
2
|n∈Z}
中,則
a
b
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣東)對任意兩個非零的平面向量
α
β
,定義
α
β
=
α
β
β
β
,若平面向量
a
、
b
滿足|
a
|≥|
b
|>0,
a
b
的夾角θ∈(0,
π
4
)
,且
a
b
b
a
都在集合{
n
2
|n∈Z}
中,則
a
b
=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對任意兩個非零的平面向量
α
β
,定義
α
?
β
=
α
β
β
β
.若平面向量
a
b
滿足|
a
|≥|
b
|>0,
a
b
的夾角θ∈(0,
π
4
),且
a
?
b
b
?
a
都在集合{
n
2
|n∈Z}中,則
a
?
b
=
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對任意兩個非零的平面向量
α
β
,定義
α
?
β
=
α
β
β
β
.若兩個非零的平面向量
a
,
b
滿足
a
b
的夾角θ∈(
π
4
π
2
)
,且
a
?
b
b
?
a
都在集合{
n
2
|n∈Z}
中,則
a
?
b
=
1
2
1
2

查看答案和解析>>

同步練習冊答案