【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a2+c2=b2﹣ac.
(1)求B的大小;
(2)設(shè)∠BAC的平分線AD交BC于D,AD=2 ,BD=1,求cosC的值.

【答案】
(1)解:在△ABC中,∵a2+c2=b2﹣ac,即a2+c2﹣b2=﹣ac.

∴cosB= =﹣ =﹣ ,B∈(0,π),可得B=


(2)解:在△ABD中,由正弦定理可得: = ,

解得sin∠BAD= =

cos∠BAC=cos2∠BAD=1﹣2sin2∠BAD=1﹣×2× =

∴sin∠BAC= = =

∴cosC=cos(60°﹣∠BAC)= + =


【解析】(1)利用余弦定理可得:cosB=﹣ ,B∈(0,π),可得B.(2)在△ABD中,由正弦定理可得: = ,解得sin∠BAD.cos∠BAC=cos2∠BAD=1﹣2sin2∠BAD.可得sin∠BAC= .可得cosC=cos(60°﹣∠BAC).
【考點(diǎn)精析】本題主要考查了余弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握余弦定理:;;才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校一個(gè)生物興趣小組對(duì)學(xué)校的人工湖中養(yǎng)殖的某種魚(yú)類進(jìn)行觀測(cè)研究,在飼料充足的前提下,興趣小組對(duì)飼養(yǎng)時(shí)間x(單位:月)與這種魚(yú)類的平均體重y(單位:千克)得到一組觀測(cè)值,如下表:

xi(月)

1

2

3

4

5

yi(千克)

0.5

0.9

1.7

2.1

2.8


(1)在給出的坐標(biāo)系中,畫(huà)出關(guān)于x,y兩個(gè)相關(guān)變量的散點(diǎn)圖.
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量y關(guān)于變量x的線性回歸直線方程
(3)預(yù)測(cè)飼養(yǎng)滿12個(gè)月時(shí),這種魚(yú)的平均體重(單位:千克)
(參考公式: = ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0,設(shè)命題p:函數(shù)y=ax在R上單調(diào)遞增;命題q:不等式ax2﹣ax+1>0對(duì)x∈R恒成立,若p且q為假,p或q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我國(guó)古代著名的數(shù)學(xué)專著《九章算術(shù)》里有﹣段敘述:今有良馬與駑馬發(fā)長(zhǎng)安至齊,齊去長(zhǎng)安一千一百二十五里,良馬初日行一百零三里,日增十三里:駑馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎駑馬,二馬相逢, 問(wèn):需日相逢.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京、張家港2022年冬奧會(huì)申辦委員會(huì)在俄羅斯索契舉辦了發(fā)布會(huì),某公司為了競(jìng)標(biāo)配套活動(dòng)的相關(guān)代言,決定對(duì)旗下的某商品進(jìn)行一次評(píng)估.該商品原來(lái)每件售價(jià)為25元,年銷售8萬(wàn)件.
(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?
(2)為了抓住申奧契機(jī),擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對(duì)該商品進(jìn)行全面技術(shù)革新和營(yíng)銷策略改革,并提高定價(jià)到x元.公司擬投入 萬(wàn)作為技改費(fèi)用,投入(50+2x)萬(wàn)元作為宣傳費(fèi)用.試問(wèn):當(dāng)該商品改革后的銷售量a至少應(yīng)達(dá)到多少萬(wàn)件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)α∈(0, ),滿足 sinα+cosα=
(1)求cos(α+ )的值;
(2)求cos(2α+ π)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=sin(2x+ )+ cos(2x+ ),則(
A.y=f(x)在(0, )單調(diào)遞增,其圖象關(guān)于直線x= 對(duì)稱
B.y=f(x)在(0, )單調(diào)遞增,其圖象關(guān)于直線x= 對(duì)稱
C.y=f(x)在(0, )單調(diào)遞減,其圖象關(guān)于直線x= 對(duì)稱
D.y=f(x)在(0, )單調(diào)遞減,其圖象關(guān)于直線x= 對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC是一個(gè)面積較大的三角形,點(diǎn)P是△ABC所在平面內(nèi)一點(diǎn)且 + +2 = ,現(xiàn)將3000粒黃豆隨機(jī)拋在△ABC內(nèi),則落在△PBC內(nèi)的黃豆數(shù)大約是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,已知B=45°,D是BC上一點(diǎn),AD=5,AC=7,DC=3,求AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案